(©Han and Sung, ICML 2019

AMBER: Adaptive Multi-Batch Experience Replay for
Continuous Action Control

Seungyul Han and Youngchul Sung

Dept. of Electrical Engineering

KAIST

SURL Workshop, 1JCAI 2019, Macao

Aug. 12, 2019



(©Han and Sung, ICML 2019

Proximal Policy Optimization (PPO)

e Proximal policy optimization [Schulman et al., 2017] : A stable RL algorithm.

e PPO updates the policy parameter 6 with the following objective function :

M—-1
. 1 . . .
Jppo(0) = 0 Z min{ p,, A, lip.(pm) Am }
m=0
— where p,, = 77::_((‘;’7';"2";)) is importance sampling (IS) weight,

— A,, is estimated by generalized advantage estimation (GAE) [Schulman et al., 2015],
— clip.(+) = clip(-,1 —¢,1 + ¢).

e 0 is updated to maximize the objective function.

e Clipped IS weight enables stable policy update.



(©Han and Sung, ICML 2019 3

On-Policy Learning

e On-policy learning : PPO only uses the current sample batch B; at ¢-th policy update.
Bi = {(5i0,@i0,7i0)s "+, (SiN-1, @i N-1,TiN-1)} (1)
e Previous batches generated by old policies are not used for the update.

e On-policy learning is sample-inefficient since we can use information from old samples for the

policy update.

e Recent RL algorithms (ACER, Q-prop, IPG, etc.) reuse old samples to enhance sample

efficiency.



(©Han and Sung, ICML 2019

Off-Policy Learning

e In off-policy learning, we store old samples in experience replay buffer R.
e For example, DQN stores independent time samples in the buffer.
e ACER stores episodic samples in episodic replay buffer.

e For the policy update, off-policy RL algorithm randomly choose minibatch or episodic

samples in the buffer.

e Off-policy learning enhances sample efficiency and usually achieves higher performance.



(©Han and Sung, ICML 2019

Contributions

e PPO has low sample-efficiency.
e We aim to reuse old sample batches for the policy update.
e However, older batches have larger IS weight and most samples in the batches are clipped.

e To overcome these drawbacks, we propose a new replay scheme :
Adaptive Multi-Batch Experience Replay (AMBER)

e |t adaptively selects the number of batches to avoid large batch average IS weight.

BipedalWalkerHardcore-v2

— PPO

—— PPO-MBER(L=2)
—— PPO-MBER(L=4)
—— PPO-MBER(L=6)
—— PPO-MBER(L=8)

1209 ~

ng weight

1.151

average importance sampli

1.00 1

iteration

Figure 1: Average IS weight of BipedalWalkerHardcore.



(©Han and Sung, ICML 2019

Multi-Batch Experience Replay

e We consider multi-batch experience replay (MBER) that stores multiple previous batches in

the replay buffer.
e At ¢-th iteration, R has L sample batches : B;,--- , B;_1.1.

e To compute PPO objective function from old samples, sample batch has estimated

advantage A, target value V;, statistics of policy distribution (u, o).

® BZ — {(Si,na Qj n, Ai,na %,na i ns O-i,n)}a n = 07 o 7N — 1.



(©Han and Sung, ICML 2019 7

Multi-Batch Experience Replay

;
‘ ‘ ‘ - ‘ ‘ ‘ ‘ \L ‘ ‘ ‘ ‘ replay memory
~T—
ACER I - ——
(episodic replay of size MV) IS —~— samples

I N A X

N samples

W mini-batches

A

PPO

(no replay) a single batch

6;
VAR
\\\
s M samples
A
’7 ‘ v ., N/M mini-batches
2 61

eh ;

replay memory
N\ \ ‘

PPO-MBER
(multi-batch replay, L = 3)

\ -
T WV saqples |
~ LM\samp es

S~

T T T }\Nﬁ.\j T o b

Figure 2: Batch construction of ACER, PPO, and PPO with the proposed MBER.

e We sample mini-batches from the replay and update the policy by the same epoch with PPO.



(©Han and Sung, ICML 2019 8

Main Problem

e Reusing old sample enhances sample efficiency, but the performance of MBER largely

depends on the replay length L and action dimension d of task.

e To find the reason of performance fluctuation, we first define batch average IS weight as

=, 0. (@i n|Si—1n)
i\Wi—Iln|2i—In
R, = N E (1 + abs (1 — )) (2)

n—0 Wei_l(ai—l,n‘si—l,n)

e |t represents the statistic difference between the current sample batch B; and [-th previous

old sample batch B;_;.

o If R;; is far from 1, they have large statistic difference and otherwise, they have similar

statistics.



(©Han and Sung, ICML 2019

Main Problem

e Fig. 3. shows R;; of several tasks (Pendulum, BipedalWalkerHardcore, Humanoid).
e Action dimension - Pendulum : 1, BipedalWalkerHardcore : 4, Humanoid : 17.

e Older sample batch has larger batch average IS weight.

e Batch average IS weight becomes larger as action dimension increases.

e It is natural because the policy independently products distribution of each action dimension.

batch average weight

1.05

1.00

Figure 3:

Pendulum-v0

RERRERN

DD DD H®HD D
T T T T

iteration

batch average weight

1.25

Batch average IS weight R;,l (l=0,---

BipedalWalkerHardcore-v2

iteration

batch average weight

=
<

g
o

=
wn

=
>

=
W

=
N

=
Hy

1.0

Humanoid-v1

DD H®mm DD
T T T T

iteration

,7) of Pendulum, BipedalWalkerHardcore, and Humanoid



(©Han and Sung, ICML 2019 10

Main Problem

e Large batch average IS weight enlarges the amount of clipped sample in PPO loss.

M-1
: | I A
JPPO(Q) — M E , mln{pmAma Chpe(pm)Am}

m=0

e Clipped sample causes zero-gradient, so it is not used for the update.

e Then, most samples of high action-dimension tasks and old sample batches are not used for

the update.

e It makes performance degradation when the replay length L or action-dimension d is too

large.



Han and Sung, ICML 2019 11
© g,

Adaptive Batch Drop

e To solve the problem, we propose adaptive multi-batch experience replay (AMBER).
e AMBER drops some batches adaptively to avoid too much clipping in PPO loss.

e It only uses old sample batches in the buffer, which satisfy

/

1—l <1+ €b, (3)
where ¢, is batch drop factor.
e It prevents that the amount of clipped samples becomes too large.

e Note that batch drop does not break sample distribution, which is important to learn the

task.



(©Han and Sung, ICML 2019

Evaluation

12

e We evaluate the performance of our method on Mujoco tasks in OpenAl GYM.

Figure 4: Mujoco tasks

e We compare 3 algorithms:

— PPO : baseline algorithm
— PPO-MBER : PPO with simple batch experience replay of various replay length L.

— PPO-AMBER : PPO with adaptive batch drop.



(©Han and Sung, ICML 2019

Evaluation

13

e Compared with PPO, AMBER enhances the final performance on Mujoco tasks.

e AMBER consistently gets the highest performance for all tasks, whereas the performance of

MBER fluctuates as L changes.

BipedalWalkerHardcore-v2

-70
— PPO
—— PPO-MBER(L=2)
-804 PPO-MBER(L=4)
€ —— PPO-MBER(L=6)
- —— PPO-MBER(L=8)
§ 7907 — PPO-AMBER
o
v
g -100 4
a
a
5
o
S -1104
v
S
[
Q1204
s
-130
200000 400000 600000 800000 1000000
timestep
InvertedDoublePendulum-v1
8000
€
2
kol
£ 6000
5
o
3
2
S 4000
o
Ef
P — PPO
© —— PPO-MBER(L=2)
2000
H PPO-MBER(L=4)
—— PPO-MBER(L=6)
—— PPO-MBER(L=8)
0 —— PPO-AMBER

0 200000

400000 600000
timestep

800000 1000000

Figure 5:

—200

—400

-600

—800

—1000

average 100 episode reward sum

-1200

600

w
=
S

s
=}
S

300

average 100 episode reward sum

N
=3
S

100

Pendulum-v0

—— PPO
—— PPO-MBER(L=2)
PPO-MBER(L=4)
—— PPO-MBER(L=6)
~—— PPO-MBER(L=8)
—— PPO-AMBER

0 200000 400000 600000 800000

1000000
timestep

Humanoid-v1

— PPO

—— PPO-MBER(L=2)
PPO-MBER(L=4)

—— PPO-MBER(L=6)

——— PPO-MBER(L=8)

—— PPO-AMBER

0 200000 400000 600000 800000
timestep

1000000

2000

1500

1000

average 100 episode reward sum
o
S
S

o

100

90

80

70

60

50

average 100 episode reward sum

40

30

HalfCheetah-v1

PPO
PPO-MBER(L=2)

PPO-MBER(L=4)
—— PPO-MBER(L=6)
—— PPO-MBER(L=8)
—— PPO-AMBER
200000 400000 600000 800000 1000000
timestep
Swimmer-vl

PPO
PPO-MBER(L=2)
PPO-MBER(L=4)
PPO-MBER(L=6)
PPO-MBER(L=8)
PPO-AMBER

200000 400000 600000
timestep

Performance comparison on Mujoco tasks

800000

1000000



Han and Sung, ICML 2019 14
© g,

Ablation Study

e We provide ablation study about the clipping factor of PPO ¢, and batch drop factor €.
e Appropriate €, enhances sample efficiency without performance degradation by the clipping.

e In summary, ¢ = 0.4 and ¢, = 0.25 gets the highest performance.

e We provide other performance comparison with TRPO and ACER, PPO-AMBER has the

best performance.

Eimwtuz

Figure 6: Performance comparison on Mujoco tasks



(©Han and Sung, ICML 2019 15

Further Discussion

e AMBER greatly enhances the performance for lower dimensional tasks, but it does not work

for higher dimensional tasks.

e It is because higher dimensional tasks have large batch IS weight even for sample batch of

previous iteration.
e Reducing learning rate helps reducing IS weight, but it is not much effective.

e Off-policy generalization in high action dimensional tasks will be future work.



Thank you !



