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Proximal Policy Optimization (PPO)

e Proximal policy optimization [Schulman et al., 2017] : A stable RL algorithm.

e PPO updates the policy parameter 6 with the following objective function :

M—-1
. 1 . . .
Jppo(0) = 0 Z min{ p,, A, lip.(pm) Am }
m=0
— where p,, = 77::_((‘;’7';"2";)) is importance sampling (IS) weight,

— A,, is estimated by generalized advantage estimation (GAE) [Schulman et al., 2015],
— clip.(+) = clip(-,1 —¢,1 + ¢).

e 0 is updated to maximize the objective function.

e Clipped IS weight enables stable policy update.
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On-Policy Learning

e On-policy learning : PPO only uses the current sample batch B; at ¢-th policy update.
Bi = {(5i0,@i0,7i0)s "+, (SiN-1, @i N-1,TiN-1)} (1)
e Previous batches generated by old policies are not used for the update.

e On-policy learning is sample-inefficient since we can use information from old samples for the

policy update.

e Recent RL algorithms (ACER, Q-prop, IPG, etc.) reuse old samples to enhance sample

efficiency.
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Off-Policy Learning

e In off-policy learning, we store old samples in experience replay buffer R.
e For example, DQN stores independent time samples in the buffer.
e ACER stores episodic samples in episodic replay buffer.

e For the policy update, off-policy RL algorithm randomly choose minibatch or episodic

samples in the buffer.

e Off-policy learning enhances sample efficiency and usually achieves higher performance.
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Contributions

e PPO has low sample-efficiency.
e We aim to reuse old sample batches for the policy update.
e However, older batches have larger IS weight and most samples in the batches are clipped.

e To overcome these drawbacks, we propose a new replay scheme :
Adaptive Multi-Batch Experience Replay (AMBER)

e |t adaptively selects the number of batches to avoid large batch average IS weight.
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Figure 1: Average IS weight of BipedalWalkerHardcore.
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Multi-Batch Experience Replay

e We consider multi-batch experience replay (MBER) that stores multiple previous batches in

the replay buffer.
e At ¢-th iteration, R has L sample batches : B;,--- , B;_1.1.

e To compute PPO objective function from old samples, sample batch has estimated

advantage A, target value V;, statistics of policy distribution (u, o).

® BZ — {(Si,na Qj n, Ai,na %,na i ns O-i,n)}a n = 07 o 7N — 1.
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Multi-Batch Experience Replay
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Figure 2: Batch construction of ACER, PPO, and PPO with the proposed MBER.

e We sample mini-batches from the replay and update the policy by the same epoch with PPO.
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Main Problem

e Reusing old sample enhances sample efficiency, but the performance of MBER largely

depends on the replay length L and action dimension d of task.

e To find the reason of performance fluctuation, we first define batch average IS weight as

=, 0. (@i n|Si—1n)
i\Wi—Iln|2i—In
R, = N E (1 + abs (1 — )) (2)

n—0 Wei_l(ai—l,n‘si—l,n)

e |t represents the statistic difference between the current sample batch B; and [-th previous

old sample batch B;_;.

o If R;; is far from 1, they have large statistic difference and otherwise, they have similar

statistics.
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Main Problem

e Fig. 3. shows R;; of several tasks (Pendulum, BipedalWalkerHardcore, Humanoid).
e Action dimension - Pendulum : 1, BipedalWalkerHardcore : 4, Humanoid : 17.

e Older sample batch has larger batch average IS weight.

e Batch average IS weight becomes larger as action dimension increases.

e It is natural because the policy independently products distribution of each action dimension.
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Main Problem

e Large batch average IS weight enlarges the amount of clipped sample in PPO loss.

M-1
: | I A
JPPO(Q) — M E , mln{pmAma Chpe(pm)Am}

m=0

e Clipped sample causes zero-gradient, so it is not used for the update.

e Then, most samples of high action-dimension tasks and old sample batches are not used for

the update.

e It makes performance degradation when the replay length L or action-dimension d is too

large.
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Adaptive Batch Drop

e To solve the problem, we propose adaptive multi-batch experience replay (AMBER).
e AMBER drops some batches adaptively to avoid too much clipping in PPO loss.

e It only uses old sample batches in the buffer, which satisfy

/

1—l <1+ €b, (3)
where ¢, is batch drop factor.
e It prevents that the amount of clipped samples becomes too large.

e Note that batch drop does not break sample distribution, which is important to learn the

task.
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Evaluation

12

e We evaluate the performance of our method on Mujoco tasks in OpenAl GYM.

Figure 4: Mujoco tasks

e We compare 3 algorithms:

— PPO : baseline algorithm
— PPO-MBER : PPO with simple batch experience replay of various replay length L.

— PPO-AMBER : PPO with adaptive batch drop.
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Evaluation
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e Compared with PPO, AMBER enhances the final performance on Mujoco tasks.

e AMBER consistently gets the highest performance for all tasks, whereas the performance of

MBER fluctuates as L changes.
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Ablation Study

e We provide ablation study about the clipping factor of PPO ¢, and batch drop factor €.
e Appropriate €, enhances sample efficiency without performance degradation by the clipping.

e In summary, ¢ = 0.4 and ¢, = 0.25 gets the highest performance.

e We provide other performance comparison with TRPO and ACER, PPO-AMBER has the

best performance.
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Figure 6: Performance comparison on Mujoco tasks
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Further Discussion

e AMBER greatly enhances the performance for lower dimensional tasks, but it does not work

for higher dimensional tasks.

e It is because higher dimensional tasks have large batch IS weight even for sample batch of

previous iteration.
e Reducing learning rate helps reducing IS weight, but it is not much effective.

e Off-policy generalization in high action dimensional tasks will be future work.
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