AMBER: Adaptive Multi-Batch Experience Replay for Continuous Action Control

Seungyul Han and Youngchul Sung

Dept. of Electrical Engineering

KAIST

SURL Workshop, IJCAI 2019, Macao

Aug. 12, 2019

Proximal Policy Optimization (PPO)

- Proximal policy optimization [Schulman et al., 2017] : A stable RL algorithm.
- ullet PPO updates the policy parameter heta with the following objective function :

$$\hat{J}_{PPO}(\theta) = \frac{1}{M} \sum_{m=0}^{M-1} \min\{\rho_m \hat{A}_m, \operatorname{clip}_{\epsilon}(\rho_m) \hat{A}_m\}$$

- where $ho_m = rac{\pi_{ heta}(a_m|s_m)}{\pi_{ heta_i}(a_m|s_m)}$ is importance sampling (IS) weight,
- \hat{A}_m is estimated by generalized advantage estimation (GAE) [Schulman et al., 2015],
- $-\operatorname{clip}_{\epsilon}(\cdot) = \operatorname{clip}(\cdot, 1 \epsilon, 1 + \epsilon).$
- ullet θ is updated to maximize the objective function.
- Clipped IS weight enables stable policy update.

On-Policy Learning

• On-policy learning: PPO only uses the current sample batch B_i at i-th policy update.

$$B_i = \{(s_{i,0}, a_{i,0}, r_{i,0}), \cdots, (s_{i,N-1}, a_{i,N-1}, r_{i,N-1})\}$$
(1)

- Previous batches generated by old policies are not used for the update.
- On-policy learning is sample-inefficient since we can use information from old samples for the policy update.
- Recent RL algorithms (ACER, Q-prop, IPG, etc.) reuse old samples to enhance sample efficiency.

Off-Policy Learning

- \bullet In off-policy learning, we store old samples in experience replay buffer ${f R}$.
- For example, DQN stores independent time samples in the buffer.
- ACER stores episodic samples in episodic replay buffer.
- For the policy update, off-policy RL algorithm randomly choose minibatch or episodic samples in the buffer.
- Off-policy learning enhances sample efficiency and usually achieves higher performance.

Contributions

- PPO has low sample-efficiency.
- We aim to reuse old sample batches for the policy update.
- However, older batches have larger IS weight and most samples in the batches are clipped.
- To overcome these drawbacks, we propose a new replay scheme : Adaptive Multi-Batch Experience Replay (AMBER)
- It adaptively selects the number of batches to avoid large batch average IS weight.

Figure 1: Average IS weight of BipedalWalkerHardcore.

Multi-Batch Experience Replay

- We consider multi-batch experience replay (MBER) that stores multiple previous batches in the replay buffer.
- At *i*-th iteration, \mathbf{R} has L sample batches : B_i, \dots, B_{i-L+1} .
- To compute PPO objective function from old samples, sample batch has estimated advantage \hat{A}_t , target value \hat{V}_t , statistics of policy distribution (μ_t, σ_t) .
- $B_i = \{(s_{i,n}, a_{i,n}, \hat{A}_{i,n}, \hat{V}_{i,n}, \mu_{i,n}, \sigma_{i,n})\}, n = 0, \dots, N-1.$

Multi-Batch Experience Replay

Figure 2: Batch construction of ACER, PPO, and PPO with the proposed MBER.

• We sample mini-batches from the replay and update the policy by the same epoch with PPO.

Main Problem

ullet Reusing old sample enhances sample efficiency, but the performance of MBER largely depends on the replay length L and action dimension d of task.

• To find the reason of performance fluctuation, we first define batch average IS weight as

$$R_{i,l} = \frac{1}{N} \sum_{n=0}^{N-1} \left(1 + abs \left(1 - \frac{\pi_{\theta_i}(a_{i-l,n}|s_{i-l,n})}{\pi_{\theta_{i-l}}(a_{i-l,n}|s_{i-l,n})} \right) \right)$$
 (2)

- It represents the statistic difference between the current sample batch B_i and l-th previous old sample batch B_{i-l} .
- If $R_{i,l}$ is far from 1, they have large statistic difference and otherwise, they have similar statistics.

Main Problem

- Fig. 3. shows $R_{i,l}$ of several tasks (Pendulum, BipedalWalkerHardcore, Humanoid).
- Action dimension Pendulum : 1, BipedalWalkerHardcore : 4, Humanoid : 17.
- Older sample batch has larger batch average IS weight.
- Batch average IS weight becomes larger as action dimension increases.
- It is natural because the policy independently products distribution of each action dimension.

Figure 3: Batch average IS weight $R'_{i,l}$ $(l=0,\cdots,7)$ of Pendulum, BipedalWalkerHardcore, and Humanoid

Main Problem

• Large batch average IS weight enlarges the amount of clipped sample in PPO loss.

$$\hat{J}_{PPO}(\theta) = \frac{1}{M} \sum_{m=0}^{M-1} \min\{\rho_m \hat{A}_m, \operatorname{clip}_{\epsilon}(\rho_m) \hat{A}_m\}$$

- Clipped sample causes zero-gradient, so it is not used for the update.
- Then, most samples of high action-dimension tasks and old sample batches are not used for the update.
- ullet It makes performance degradation when the replay length L or action-dimension d is too large.

Adaptive Batch Drop

- To solve the problem, we propose adaptive multi-batch experience replay (AMBER).
- AMBER drops some batches adaptively to avoid too much clipping in PPO loss.
- It only uses old sample batches in the buffer, which satisfy

$$R'_{i-l} < 1 + \epsilon_b, \tag{3}$$

where ϵ_b is batch drop factor.

- It prevents that the amount of clipped samples becomes too large.
- Note that batch drop does not break sample distribution, which is important to learn the task.

Evaluation

• We evaluate the performance of our method on Mujoco tasks in OpenAl GYM.

Figure 4: Mujoco tasks

- We compare 3 algorithms:
 - $-\ \mathsf{PPO}$: baseline algorithm
 - PPO-MBER : PPO with simple batch experience replay of various replay length L.
 - PPO-AMBER : PPO with adaptive batch drop.

Evaluation

- Compared with PPO, AMBER enhances the final performance on Mujoco tasks.
- ullet AMBER consistently gets the highest performance for all tasks, whereas the performance of MBER fluctuates as L changes.

Figure 5: Performance comparison on Mujoco tasks

Ablation Study

- We provide ablation study about the clipping factor of PPO ϵ , and batch drop factor ϵ_b .
- ullet Appropriate ϵ_b enhances sample efficiency without performance degradation by the clipping.
- \bullet In summary, $\epsilon=0.4$ and $\epsilon_b=0.25$ gets the highest performance.
- We provide other performance comparison with TRPO and ACER, PPO-AMBER has the best performance.

Figure 6: Performance comparison on Mujoco tasks

Further Discussion

• AMBER greatly enhances the performance for lower dimensional tasks, but it does not work for higher dimensional tasks.

- It is because higher dimensional tasks have large batch IS weight even for sample batch of previous iteration.
- Reducing learning rate helps reducing IS weight, but it is not much effective.
- Off-policy generalization in high action dimensional tasks will be future work.

Thank you!