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Proximal Policy Optimization (PPO)

• Proximal policy optimization [Schulman et al., 2017] : A stable RL algorithm.

• PPO updates the policy parameter θ with the following objective function :

ĴPPO(θ) =
1

M

M−1∑
m=0

min{ρmÂm, clipε(ρm)Âm}

– where ρm = πθ(am|sm)
πθi(am|sm) is importance sampling (IS) weight,

– Âm is estimated by generalized advantage estimation (GAE) [Schulman et al., 2015],

– clipε(·) = clip(·, 1− ε, 1 + ε).

• θ is updated to maximize the objective function.

• Clipped IS weight enables stable policy update.
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On-Policy Learning

• On-policy learning : PPO only uses the current sample batch Bi at i-th policy update.

Bi = {(si,0, ai,0, ri,0), · · · , (si,N−1, ai,N−1, ri,N−1)} (1)

• Previous batches generated by old policies are not used for the update.

• On-policy learning is sample-inefficient since we can use information from old samples for the

policy update.

• Recent RL algorithms (ACER, Q-prop, IPG, etc.) reuse old samples to enhance sample

efficiency.
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Off-Policy Learning

• In off-policy learning, we store old samples in experience replay buffer R.

• For example, DQN stores independent time samples in the buffer.

• ACER stores episodic samples in episodic replay buffer.

• For the policy update, off-policy RL algorithm randomly choose minibatch or episodic

samples in the buffer.

• Off-policy learning enhances sample efficiency and usually achieves higher performance.



c©Han and Sung, ICML 2019 5

Contributions

• PPO has low sample-efficiency.

• We aim to reuse old sample batches for the policy update.

• However, older batches have larger IS weight and most samples in the batches are clipped.

• To overcome these drawbacks, we propose a new replay scheme :

Adaptive Multi-Batch Experience Replay (AMBER)

• It adaptively selects the number of batches to avoid large batch average IS weight.
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Figure 1: Average IS weight of BipedalWalkerHardcore.
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Multi-Batch Experience Replay

• We consider multi-batch experience replay (MBER) that stores multiple previous batches in

the replay buffer.

• At i-th iteration, R has L sample batches : Bi, · · · , Bi−L+1.

• To compute PPO objective function from old samples, sample batch has estimated

advantage Ât, target value V̂t, statistics of policy distribution (µt, σt).

• Bi = {(si,n, ai,n, Âi,n, V̂i,n, µi,n, σi,n)}, n = 0, · · · , N − 1.
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Multi-Batch Experience Replay

ACER
(episodic replay of size 𝑀𝑀𝑀𝑀)

PPO
(no replay)

PPO-MBER
(multi-batch replay, 𝐿𝐿 = 3)

a single batch

replay memory

replay memory

𝐿𝐿𝐿𝐿/𝑀𝑀 mini-batches

𝑁𝑁/𝑀𝑀 mini-batches

𝑊𝑊 mini-batches

Figure 2: Batch construction of ACER, PPO, and PPO with the proposed MBER.

• We sample mini-batches from the replay and update the policy by the same epoch with PPO.
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Main Problem

• Reusing old sample enhances sample efficiency, but the performance of MBER largely

depends on the replay length L and action dimension d of task.

• To find the reason of performance fluctuation, we first define batch average IS weight as

Ri,l =
1

N

N−1∑
n=0

(
1 + abs

(
1− πθi(ai−l,n|si−l,n)

πθi−l(ai−l,n|si−l,n)

))
(2)

• It represents the statistic difference between the current sample batch Bi and l-th previous

old sample batch Bi−l.

• If Ri,l is far from 1, they have large statistic difference and otherwise, they have similar

statistics.
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Main Problem

• Fig. 3. shows Ri,l of several tasks (Pendulum, BipedalWalkerHardcore, Humanoid).

• Action dimension - Pendulum : 1, BipedalWalkerHardcore : 4, Humanoid : 17.

• Older sample batch has larger batch average IS weight.

• Batch average IS weight becomes larger as action dimension increases.

• It is natural because the policy independently products distribution of each action dimension.
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Figure 3: Batch average IS weight R′i,l (l = 0, · · · , 7) of Pendulum, BipedalWalkerHardcore, and Humanoid
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Main Problem

• Large batch average IS weight enlarges the amount of clipped sample in PPO loss.

ĴPPO(θ) =
1

M

M−1∑
m=0

min{ρmÂm, clipε(ρm)Âm}

• Clipped sample causes zero-gradient, so it is not used for the update.

• Then, most samples of high action-dimension tasks and old sample batches are not used for

the update.

• It makes performance degradation when the replay length L or action-dimension d is too

large.



c©Han and Sung, ICML 2019 11

Adaptive Batch Drop

• To solve the problem, we propose adaptive multi-batch experience replay (AMBER).

• AMBER drops some batches adaptively to avoid too much clipping in PPO loss.

• It only uses old sample batches in the buffer, which satisfy

R′i−l < 1 + εb, (3)

where εb is batch drop factor.

• It prevents that the amount of clipped samples becomes too large.

• Note that batch drop does not break sample distribution, which is important to learn the

task.
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Evaluation

• We evaluate the performance of our method on Mujoco tasks in OpenAI GYM.

Figure 4: Mujoco tasks

• We compare 3 algorithms:

– PPO : baseline algorithm

– PPO-MBER : PPO with simple batch experience replay of various replay length L.

– PPO-AMBER : PPO with adaptive batch drop.
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Evaluation

• Compared with PPO, AMBER enhances the final performance on Mujoco tasks.

• AMBER consistently gets the highest performance for all tasks, whereas the performance of

MBER fluctuates as L changes.
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Figure 5: Performance comparison on Mujoco tasks
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Ablation Study

• We provide ablation study about the clipping factor of PPO ε, and batch drop factor εb.

• Appropriate εb enhances sample efficiency without performance degradation by the clipping.

• In summary, ε = 0.4 and εb = 0.25 gets the highest performance.

• We provide other performance comparison with TRPO and ACER, PPO-AMBER has the

best performance.

Figure 6: Performance comparison on Mujoco tasks
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Further Discussion

• AMBER greatly enhances the performance for lower dimensional tasks, but it does not work

for higher dimensional tasks.

• It is because higher dimensional tasks have large batch IS weight even for sample batch of

previous iteration.

• Reducing learning rate helps reducing IS weight, but it is not much effective.

• Off-policy generalization in high action dimensional tasks will be future work.



Thank you !


