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Motivation

» Experience replay improves sample efficiency and
training stabilization for deep reinforcement learning

methods.
* Traditional retention method: FIFO

* However, this leads to the problem of generalization

and forgetting in long-time training




Motivation

» Generalization
eStuck In a small region of the state space

eEXperiences are overfitted and almost the same

» Catastrophic forgetting

eorgetting the knowledge obtained previously




Related work

Prioritized experience replay (PER)

e Focus on the instantaneous utility of experiences and implements the prioritized sampling in replay buffer based on the

TD error

Synthetic experiences

e Two replay buffers with FIFO and a distance-based retention policy

Proxies

e To guide the retention and sampling of replay buffer via prior knowledge on control problems

Hindsight experience replay (HER)

e To deal with sparse and binary rewards



o

a2 000HDL

Catastrophic forgetting ,@@

Y/
UM G\“’&‘

New experience

FIFO + FIFO
-Early Period -Late Period
@ TN orr'e
N '~ e
RS-DRB (Eq. 2) S _ s RS-DRB (Eq. 1)
-Early Period '~ ~ -Early Period
~V
7| ~.
e ~ .
-t
4 — . >
Exploration s RS-DRB (Eq.2)  Exploitation
<:>" -Late Period
RS-DRB (Eqg. 1)
-Late Period

v

Old experience
The stream of state distribution of training batch



Method

 Reservoir sampling

n=1

" S(Da)
 Double replay buffers
e Exploration buffer (Reservoir Sampling) and exploitation buffer (FIFO)
« Sampling ratio
e To sample the experiences of training batch from two buffers

e Adaptive to the policy update rate



Double replay buffers

» Exploration is necessary to search the entire state space
 Discrete action problems (based on DON)
e An e-greedy policy to control the magnitude of the exploration

 Continuous action problems(based on DDPG)

e Anoise V' to drive exploration

» A threshold 7 is to determine whether the action belongs to exploration action a, or exploitation action

ag-



Sampling ratio

 Atraining batch size is N,

The number of the same actions n;, from two sets of actions

( n,
T= N X Tmax (1)
b
4 n,
T = max{e,— X T ax} (2)
\ Ny

* TN, experiences are sampled from exploration buffer D,., and the rest ones are sampled from exploitation

buffer D,



Experiment

« GridWorld (10x10)

e Eight actions

e Reward -1 every state except terminate state

(b) Best policy (at 2000 episodes) (c) Policy at 30000 episodes

(a) The nptima] policy
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Experiment

* Discrete Problem: A Barriered GridWorld

(a) Training Performance 00 (b) Generalization Performance
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Experiment

 Continuous problem: Pendulum

(a) Training Performance (b) Generalization Performance
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Conclusion

 Our paper presented a new RS-DRB framework to retain the experiences in the replay buffer.

 The exploration buffer with the reservoir sampling helps to maintain the coverage of the entire state

space.

« The adaptive sampling ratio balances the experiences sampled from these two buffers according to

the change of the policy.




Thanks!




