
School of Computer Science and Technology
Soochow University

A framework of dual replay buffer: balancing 

forgetting and generalization in reinforcement learning

Linjing Zhang, Zongzhang Zhang , Zhiyuan Pan , Yingfeng Chen,

Jiangcheng Zhu, Zhaorong Wang, Meng Wang, Changjie Fan



2
School of Computer Science and Technology

Soochow University

Motivation

• Experience replay improves sample efficiency and 

training stabilization for deep reinforcement learning 

methods. 

• Traditional retention method: FIFO 

• However, this leads to the problem of generalization

and forgetting in long-time training.
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• Generalization

⚫Stuck in a small region of the state space

⚫Experiences are overfitted and almost the same

• Catastrophic forgetting

⚫Forgetting the knowledge obtained previously

Motivation
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• Prioritized experience replay (PER)

⚫ Focus on the instantaneous utility of experiences and implements the prioritized sampling in replay buffer based on the

TD error

• Synthetic experiences

⚫ Two replay buffers with FIFO and a distance-based retention policy

• Proxies

⚫ To guide the retention and sampling of replay buffer via prior knowledge on control problems

• Hindsight experience replay (HER)

⚫ To deal with sparse and binary rewards

Related work
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Catastrophic forgetting 
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• Reservoir sampling
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• Double replay buffers

⚫ Exploration buffer (Reservoir Sampling) and exploitation buffer (FIFO)

• Sampling ratio

⚫ To sample the experiences of training batch from two buffers

⚫ Adaptive to the policy update rate

Method 
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• Exploration is necessary to search the entire state space

• Discrete action problems (based on DQN)

⚫ An 𝜖-greedy policy to control the magnitude of the exploration

• Continuous action problems(based on DDPG)

⚫ A noise 𝒩 to drive exploration

• A threshold 𝜂 is to determine whether the action belongs to exploration action 𝑎𝑟 or exploitation action

𝑎𝑔.

Double replay buffers
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• A training batch size is 𝑁𝑏

The number of the same actions 𝑛𝑏 from two sets of actions

• 𝜏𝑁𝑏 experiences are sampled from exploration buffer 𝐷𝑟, and the rest ones are sampled from exploitation

buffer 𝐷𝑔

Sampling ratio

𝜏 =
𝑛𝑏
𝑁𝑏

× 𝒯𝑚𝑎𝑥 (1)

𝜏 = max{𝜖,
𝑛𝑏
𝑁𝑏

× 𝒯𝑚𝑎𝑥} (2)
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• GridWorld (10×10)

⚫ Eight actions

⚫ Reward -1 every state except terminate state

Experiment 
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Experiment 

• Discrete Problem: A Barriered GridWorld

G

S

带有障碍物的栅格世界A Barriered GridWorld
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• Continuous problem: Pendulum

Experiment

Pendulum
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• Our paper presented a new RS-DRB framework to retain the experiences in the replay buffer.

• The exploration buffer with the reservoir sampling helps to maintain the coverage of the entire state

space.

• The adaptive sampling ratio balances the experiences sampled from these two buffers according to

the change of the policy.

Conclusion 
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Thanks!


