SOOCHOW UNIVERSITY

A framework of dual replay buffer: balancing forgetting and generalization in reinforcement learning

Linjing Zhang, Zongzhang Zhang, Zhiyuan Pan, Yingfeng Chen, Jiangcheng Zhu, Zhaorong Wang, Meng Wang, Changjie Fan

Motivation

- Experience replay improves sample efficiency and training stabilization for deep reinforcement learning methods.
- Traditional retention method: FIFO
- However, this leads to the problem of generalization and forgetting in long-time training.

Motivation

- Generalization
 - •Stuck in a small region of the state space
 - Experiences are **overfitted** and almost the same
- Catastrophic forgetting
 - Forgetting the knowledge obtained previously

Related work

Prioritized experience replay (PER)

• Focus on the instantaneous utility of experiences and implements the prioritized sampling in replay buffer based on the TD error

Synthetic experiences

• Two replay buffers with FIFO and a distance-based retention policy

Proxies

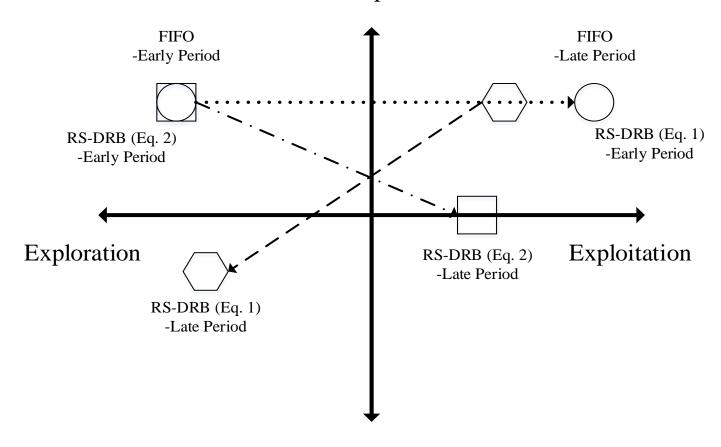
• To guide the retention and sampling of replay buffer via prior knowledge on control problems

Hindsight experience replay (HER)

• To deal with sparse and binary rewards

Catastrophic forgetting

New experience



Old experience

The stream of state distribution of training batch

Method

Reservoir sampling

$$P[(s, a, r, s')_{i}] = \frac{k}{i} \times \prod_{n=1}^{S(\mathcal{D}_{a})-i} (1 - \frac{k}{i+n} \times \frac{1}{k})$$
$$= \frac{k}{i} \times \prod_{n=1}^{S(\mathcal{D}_{a})-i} (\frac{i+n-1}{i+n})$$
$$= \frac{k}{S(\mathcal{D}_{a})}$$

- Double replay buffers
 - Exploration buffer (Reservoir Sampling) and exploitation buffer (FIFO)
- Sampling ratio
 - To sample the experiences of training batch from two buffers
 - Adaptive to the policy update rate

Double replay buffers

- Exploration is necessary to search the **entire** state space
- Discrete action problems (based on DQN)
 - An ϵ -greedy policy to control the magnitude of the exploration
- Continuous action problems(based on DDPG)
 - A noise \mathcal{N} to drive exploration
- A threshold η is to determine whether the action belongs to exploration action a_r or exploitation action a_g .

Sampling ratio

• A training batch size is N_b

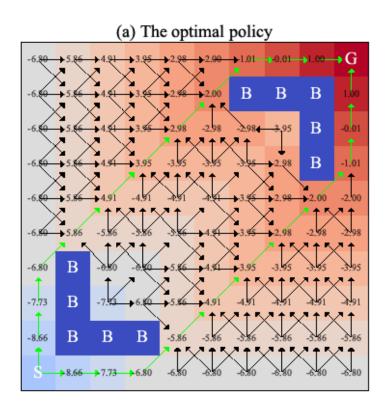
The number of the same actions n_b from two sets of actions

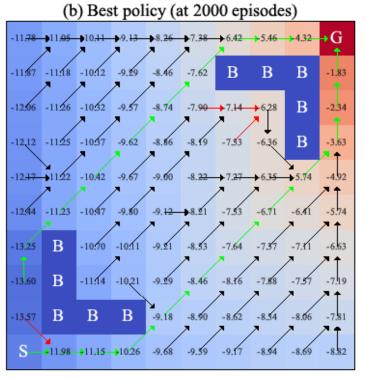
$$\begin{cases} \tau = \frac{n_b}{N_b} \times \mathcal{T}_{max} \\ \tau = \max\{\epsilon, \frac{n_b}{N_b} \times \mathcal{T}_{max}\} \end{cases}$$
 (1)

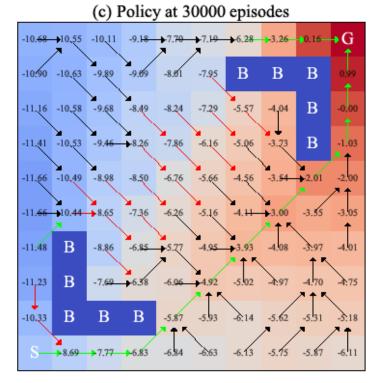
• τN_b experiences are sampled from exploration buffer D_r , and the rest ones are sampled from exploitation buffer D_q

Experiment

- GridWorld (10×10)
 - Eight actions
 - Reward -1 every state except terminate state

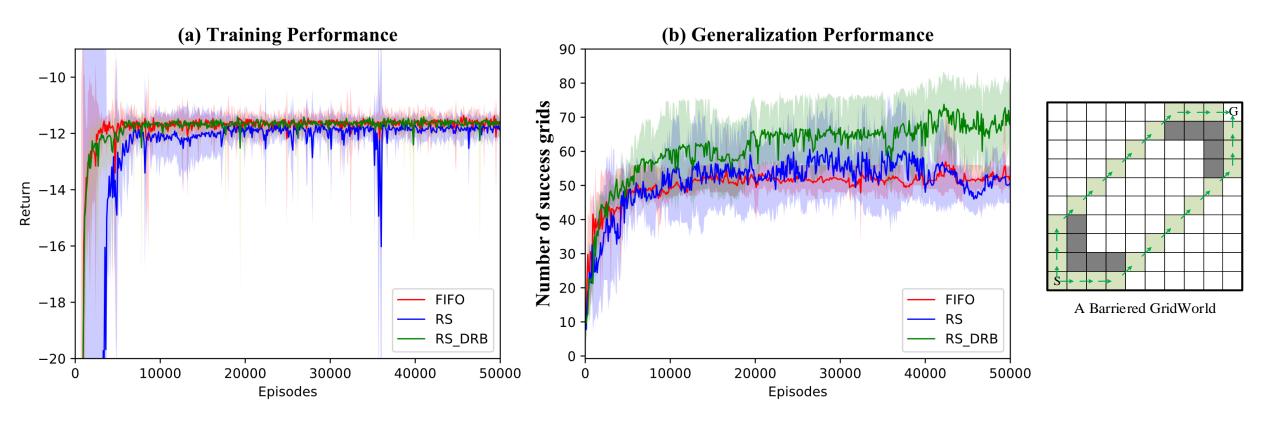






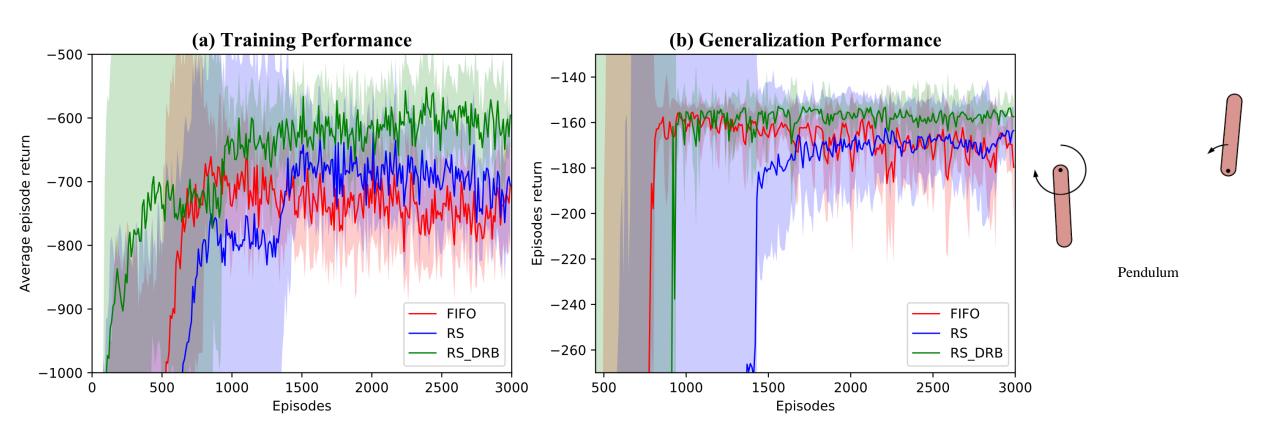
Experiment

Discrete Problem: A Barriered GridWorld



Experiment

• Continuous problem: Pendulum



Conclusion

- Our paper presented a new RS-DRB framework to retain the experiences in the replay buffer.
- The exploration buffer with the reservoir sampling helps to maintain the coverage of the entire state space.
- The adaptive sampling ratio balances the experiences sampled from these two buffers according to the change of the policy.

Thanks!