Continuous Curriculum Learning for Reinforcement Learning

Andrea Bassich' , Daniel Kudenko?,

'University of York
2University of York, JetBrains Research

{ab1770, daniel.kudenko} @york.ac.uk,

Abstract

Curriculum Learning for Reinforcement Learning
has been an active area of research for over two
years. Its principle is to train an agent on a defined
sequence of source tasks, called Curriculum, to in-
crease the agent’s performance and learning speed.
This paper proposes to extend the discrete defini-
tion of a Curriculum, to a continuous one. The main
concept behind this form of Curriculum is to de-
fine a continuous function, called “decay function”,
that specifies how the difficulty of the environment
should change over time, and to adjust the environ-
ment accordingly. In this paper, we report the ef-
fects of utilising different decay functions, as well
as introducing a function that automatically creates
a Continuous Curriculum based on the agent’s per-
formance. Furthermore, we explore the effects that
changing the granularity of the Curriculum (how
often the difficulty of the task is updated) has on
the performance of the agent. Our experimental re-
sults show the benefits of using a Continuous Cur-
riculum in both a single agent and a complex multi-
agent task.

1 Introduction

”Humans need about two decades to be trained as fully
functional adults of our society. That training is highly or-
ganised, based on an education system and a Curriculum
which introduces different concepts at different times, ex-
ploiting previously learned concepts to ease the learning of
new abstractions.”[Bengio et al., 2009]

Machines, on the other hand, require hours rather than
years worth of training, but can still benefit from structure
and guidance. This guidance can take various forms, one of
which is to organise the learning process in a similar way
to the human educational system: progressively introducing
more concepts and harder examples by exploiting previous
knowledge. This method is called ”Curriculum Learning”,
which has been an active field of research in the past few
years, especially regarding its application to Reinforcement
Learning (RL). Given RL is used to solve increasingly chal-
lenging domains, often it is inefficient, or even not possible
for the agent to start learning on the full task. For this reason,

the Curriculum Learning approach is used, which consists of
defining a set of source tasks and training the agent on each
of them individually before progressing to learning on the full
task.

Unlike previous work in this area, which focuses on defin-
ing discrete sub-tasks for the agent to learn, this paper in-
troduces the concept of changing the difficulty of an environ-
ment in a continuous way, to create a Continuous Curriculum.
This paper therefore analyses the benefits of using a continu-
ous form of Curriculum and sets out the required mathemat-
ical framework to make this possible. This is achieved by
extending the notion of Curriculum introduced by Narvekar
et al. [Narvekar er al., 2016], and by introducing the con-
cept of granularity - the ability to change the difficulty of the
environment up to every episode.

The first section of this paper reviews the relevant litera-
ture in Curriculum Learning and then discusses the formal as-
pects of a Continuous Curriculum. The second section deals
with the practical aspects of creating a Continuous Curricu-
lum and introduces different kinds of decay functions, one
of which automatically creates continuous curricula based on
the agent’s performance. Following this, is the section pre-
senting the results obtained on both a single and multi-agent
environment, using different decay functions and Curriculum
granularities. Finally, we identify areas of future research in
this specific field.

2 Background

This section of the paper discusses Curriculum Learning, as
well as briefly outlining some methods for the automation of
the creation of a Curriculum.

2.1 Curriculum Learning

Bengio et al. first introduced Curriculum Learning in 2009
[Bengio et al., 2009] as a Machine Learning concept to im-
prove the performance of Supervised Learning. The inspira-
tion for this method came from observing the way humans
learn, starting with simple concepts and gradually progress-
ing to harder problems.

Assume there is a family of cost functions C'y (#) such that
Cy can be easily minimised, and C} is the target function
one actually wants to minimise. The Curriculum Learning
approach consists of trying to minimise Cy(6) first, and then
gradually increasing A until it reaches one while keeping 6 in



a local minimum of C\ (). In order to do this, let z be a vari-
able that represents a training example, then P(z) is defined
as the probability of the learner being presented with example
z, and Q(z) is the probability of the learner being presented
with example z given a certain C) (). Given a weight matrix
W (%), the relationship between P(z) and Qx(z) is defined
by the equation:

Qr(z) x Wx(2)P(z) V=z (2.1)
Furthermore, if W7 (z) = 1, then the equation becomes:

Qi(2) = P(2) ¥z (2.2)

A Curriculum is defined as a sequence of probability dis-
tributions @) that satisfy the following conditions:

H(Qx) < H(Qxte) Ve>0 (2.3)
Wite(z) > Wi(z) Vz,Ve>0 2.4)

The first condition imposes that the entropy of the distri-
butions () has to increase the larger A becomes, whereas the
second condition states that ¥/, () has to increase monotoni-
cally as ) increases [Bengio et al., 2009]. Curriculum Learn-
ing, as defined here, progressively increases the difficulty of
the training by adjusting the probability of examples of dif-
ferent difficulty being shown to the learner.

2.2 Curriculum Learning in RL

Curriculum Learning was first applied to RL by Narvekar et
al. in 2016 [Narvekar ef al., 2016]. As RL is very differ-
ent from Supervised Learning, a new Curriculum Learning
framework was created. This involved generating a sequence
of source tasks, called ”Curriculum”, and, similarly to what
happens in Transfer Learning, training the agent on each one
of the source tasks to then train on the target task. Curricu-
lum Learning makes two fundamental assumptions on the do-
main: that different degrees of freedom exist which serve
as parameters of the environment; moreover, it is assumed
that there is a known ordering over each parameter that cor-
responds to task complexity.

One of the most challenging problems to tackle when it
comes to Curriculum Learning is the automatic creation of a
Curriculum. The problem consists in creating an algorithm
capable of automatically generating a Curriculum given: a
domain, an agent, and a difficulty ordering over the environ-
ment’s parameters.

To automate the creation of a Curriculum one approach is
to formulate this problem as an MDP, like in Narvekar et al.
[Narvekar et al., 2017]. Once the Curriculum generation is
defined as an MDP, it is then possible to use an RL technique
to learn a solution. In this specific case, the learning algo-
rithm used is a modified version of Monte Carlo Approxima-
tion. This method is the first attempt at autonomous Curricu-
lum creation, and as such has its limitations. One of the steps
of this algorithm involves learning all the candidate sub-tasks
and adding the one that modifies the agent’s policy the most
to the Curriculum. Which has the potential to be very time
consuming especially in large environments where there is a
large number of source tasks, or it may take several time-steps
for an agent to learn even a single sub-task.

Another approach to the automatic creation of a Curricu-
lum is to represent a Curriculum using a Directed Acyclic
Graph (DAG) and use a heuristic to try to determine the trans-
fer potential between different source tasks [Svetlik et al.,
2017]. This implies, that instead of learning each task to
choose whether or not it was a candidate to be added to the
Curriculum, it is sufficient to use a heuristic function to eval-
uate its transfer potential. This method lays the foundations
to have a further layer of automation in the creation of a Cur-
riculum, by using Object-Oriented MDPs (OOMDPs), as in
Da Silva et al. [Da Silva and Costa, 2018].

OOMDPs introduce the concept of class, to add a layer of
abstraction to the state representation. As in Object-Oriented
Programming, a class has different attributes, each one with
a different domain. Therefore, a state can be represented as a
set of instances of different classes, or as the value of the at-
tributes of each instance of the classes. This makes it possible
to automate the creation of source tasks with minimal human
supervision. Once the target task is represented using objects,
the algorithm should randomly select objects from the target
task to build a set of source tasks. It is important to note that
this method does not guarantee the creation of solvable ex-
amples. As such, human supervision becomes vital, as one
can either modify the algorithm to guarantee the solvability
of source tasks, or review the set of source tasks and elimi-
nate the ones that cannot be solved. One flaw of both methods
above ([Svetlik et al., 20171, [Da Silva and Costa, 2018]) is
that they rely on a heuristic to try to determine which source
tasks should be added to the Curriculum. However, finding a
better way to estimate how adding a source task to a Curricu-
lum would affect the performance of the agent is very chal-
lenging, as it is not feasible to learn all of the candidate tasks.
Consequently, the application of a new form of Curriculum
Learning was designed to avoid these issues, and streamline
the creation of a curriculum with minimal human supervision.

3 Continuous Curriculum Learning

This chapter first discusses the existing mathematical frame-
work for Curriculum Learning defined in Narvekar et
al.[Narvekar er al., 2016] and sets out the necessary frame-
work for a Continuous Curriculum. Later in this section, we
introduce decay functions, which specify how the difficulty
of the environment should change over time.

3.1 Framework Definition

As outlined in Narvekar et al. [Narvekar et al., 2016] the
task to solve is represented as a domain D, that has a num-
ber of degrees of freedom, or parameters, that are contained
in a vector F' = [Fy, ..., F},]. Furthermore, an ordering O is
known over each parameter corresponding to parameter dif-
ficulty, and there is a generator 7 : D * F = M that takes
a domain D and a parameter vector F' as inputs, and creates
a Markov Decision Process M;. Finally, a Curriculum is de-
fined as the set of MDPs M = {Mj, ..., M, } used to train the
agent.

We formally define the ordering O as a function O : D *
F = [0,1] where the arguments are the domain D, and the
parameter vector F, and the output is a real number with a
value representing the difficulty of the MDP 7(D, F').



3.2 Continuous Curriculum

The aim of this paper is to extend the notion of a discrete
curriculum to a continuous one; this presents its own set of
challenges: in fact in order to achieve this we need a way to
calculate the parameter vector I’ at any given time.

Firstly we define a parameter 6 € [0, 1] called decay fac-
tor, whose value will determine the difficulty of the MDP the
agent will be training on. The MDP created when ¢ = 0 will
be the target task, and the bigger the value of d the easier the
MDP becomes. In our approach, the training of the agent will
start with the value of § set as one, and decay over time until
it reaches zero.

More formally, we need to specify how changing ¢ af-
fects the feature vector F' while satisfying the constraint of
monotonically increasing the difficulty as § decreases. The
difficulty of a feature vector F' is assessed by using the or-
dering O. Consequently, we introduce a Mapping function
® : [0,1] — F that maps a certain value of § to a set of
parameters F'. The mapping ® is bound by the following
equation:

O(D,®(8)) < O(D,®(§ — z)) (3.1

V6 € 10,1],z € [0, 9]

which specifies that the difficulty of ' = ®(d), accord-
ing to the ordering O, has to increase monotonically as § de-
creases.

The principle behind Continuous Curriculum Learning is
to change the value of § up to every episode, so for every time
0 changes, a new source task is added to the Curriculum. This
means that given a Mapping function ®, changing ¢ defines a
new source task:

M; = 7(D, () (3.2)

As 4, is the only variable in the creation of My, specifying
the way J,; changes over time is enough to define the set of
source tasks M = [My, ..., M;], which is the agent’s Curricu-
Tum.

3.3 Decay Functions

As the way d; is modified defines the Curriculum of the agent,
decay functions are integral to this paper. They are used to
describe how §; should be changed over time and can be con-
sidered as the “generators” of a Continuous Curriculum.

Let P be a class of functions, called performance functions,
that define how the agent is performing at any given moment.
This class includes the reward function and other environment
specific functions.

Then the value of ¢, is modified according to a decay func-
tion A that takes a set of arguments (that depend on the decay
function used) as input.

A (args) — 6, (3.3)

An important constraint on the value of ¢, is the fact that it
has to be monotonically decreasing, causing the difficulty of
the environment the agent is trained on to only increase.

Fixed decay
The first class of decay functions used in this paper is called
“Fixed decay”. It includes all the decay functions that do not
take into account any information regarding the performance
of the agent to derive the value of J,.

The most simple example of this class is the Linear decay
function. Once the time when the decay should end, ¢, is
defined, the equation of this decay function is:

A(t,t.) = maw(1 - ti 0) (3.4)

€

This function has the upside of being easily implemented,
and having only one parameter makes the parameter selection
process somewhat trivial. On the other hand, being a linear
function means that it lacks flexibility.

For this reason, another function introduced in this research
is the Exponential decay function. It was designed to allow
for a parameter to indicate when the decay should end, and
also have a parameter s which influences the slope of the de-
cay. If s is positive, the smaller the s, the steeper the initial
part of the decay, if s is negative, the smaller the absolute
value of s, the shallower the initial part of the decay. When
the absolute value of s is large, the decay converges to a Lin-
ear decay. The equation for the Exponential decay function
is:

Q

- B
1-8
a:eitc%s7ﬁze_&l?

Ac(t,te, s) = max( ,0) (3.5)

In the equation above, « is the key factor responsible for
the decay, starting at 1 when t = 0 and then decaying as t
increases. The reason why [ is subtracted at the numerator
is that given a certain number of time-steps t., the value of
«a — [ will be equal to 0 at t = ¢, and it will be clipped to 0
as t keeps increasing. Finally the denominator is necessary to
keep the constraint that §; = 1, as without the denominator
bo=1-20.

The functions that belong to the Fixed decay class are gen-
erally easy to implement into the environment, and as we will
see later, are a quick way to improve the performance of the
agent. On the other hand, the agent learns differently on ev-
ery run, and using the same decay function could sometimes
hurt the training performance. Addressing this, and seeking a
further layer of automation when creating a Continuous Cur-
riculum, were the motivations behind creating the Adaptive
decay class.

Adaptive decay

The second class of decay functions defined in this paper as
” Adaptive decay” includes all the functions that take into ac-
count the performance of the agent when choosing the value
of (5t.

A member of this class is the function called “Friction-
Based decay”, which uses a simple model from physics, a
body sliding on a plane with friction between them, to deter-
mine the decay. This provides a variable (the speed of the
body) that can be used as the decay factor §;. The speed of
the body is initialised at 1 and can be modified by chang-
ing the friction coefficient y between the body and the plane.



Algorithm 1 Continuous Curriculum Learning

Input: Decay function A, mapping function ®, performance
function P

Let s be the current state
Let M be the MDP the agent trains on
Lett=0
while agent learning do
Let 575 = A((stfl, t, P(S))
if change parameters condition then
Let FF = (I)((Sf)
Let M be the MDP with parameter vector F'
end if
Lett =141
end while

TeYRRIUNRLD

—_

The value of 4 is determined by analysing the average gra-
dient of the chosen performance function over a set number
of time-steps by using a “’Derivative Queue”. The length of
the Derivative Queue influences how sudden the updates to ¢;
are: in fact the longer the queue, the smoother the updates. A
positive y results in the object slowing down (and § decaying)
which occurs when the agent’s performance is improving. On
the other hand, if the performance drops, the friction coeffi-
cient y will be negative. In this case, if the object is still
moving, a force of the magnitude the friction would have had
if o was positive is applied to speed up the object.

Under normal circumstances, this would result in one of
the constraints for decay functions being broken. We stated
that 0; > d;41, so if the speed of the object increases, the
value of ¢ is kept constant until the speed of the object re-
turns back to 4. This results in § decaying when the agent’s
performance is improving, and staying stationary when the
agent’s performance drops or returns to the value in which it
was previously locked. This particular decay function also
has ¢ locked at 1 until the Derivative Queue is full, which
prevents the derivative from quickly shifting at the start, po-
tentially causing an abrupt increase in difficulty in the initial
steps of the training.

This decay function has two parameters: the length of the
Derivative Queue and the object’s weight. As mentioned
above, the former influences the smoothness of the decay; the
latter, on the other hand, enables the decay function to adapt
to different environments. Its effect is similar to normalis-
ing the values of the performance function, as changing the
weight of the object influences the extent the decay function
is affected by a change in the gradient of the reward function.
If the reward of a test run is recorded, this parameter can be
derived automatically by simulating the decay and setting a
certain number of time-steps where the decay needs to end.

3.4 Curriculum Granularity

Granularity is the key feature that distinguishes a Continuous
Curriculum from a discrete one. It is defined as the frequency
with which the difficulty of an environment is changed dur-
ing the Curriculum. The more granular the Curriculum, the
more frequently the difficulty is changed. Our experimental
results show that using a higher granularity results in a higher

performance.

However, there are some environments where it is not prac-
tical to train with the highest available granularity: all the en-
vironments where changing the parameters is time consum-
ing. An example of this is one of our test domains, Half Field
Offense; in this domain it is necessary to restart the game
server to change the parameters, which can only be done at
the end of an episode and takes about two seconds. As the
number of episodes can be anywhere from 25 to 40 thousand
when training for 3 million time-steps, changing the difficulty
after each episode is unfeasible. For this reason in the HFO
domain the difficulty is updated every 2000 time-steps.

4 Experimental Setting

This section describes the two domains used to test the bene-
fits of a Continuous Curriculum. The first is the Predator-Prey
environment implemented on a grid world, while the second
is Half Field Offence, a sub-task in RoboCup simulated soc-
cer.

The learning algorithm used in all the experiments was
Proximal Policy Optimisation, as implemented in the pack-
age "OpenAl Baselines” [Dhariwal ez al., 2017]

4.1 Predator-Prey Environment

The first test domain used in this paper is the Predator-Prey
environment. In this domain, the agent is in a ten by ten grid
world, and is tasked with avoiding a predator while eating
prey to prevent starvation. The state space is comprised of
the relative coordinates of the predator and nearest prey, as
well as the distance to each closest wall North, East, South
and West. The agent starts with 100 health points and loses
one health point per time-step. Eating prey restores 10 health
points, and being eaten by the predator or starving results in
the episode terminating. The reward function used is the dif-
ference between the agent’s health at the start and end of the
episode, but being eaten by the predator always results in a
reward of -100. With an optimal policy it is possible to sur-
vive indefinitely in this environment, so the duration of each
episode was capped at 1000 time-steps. The way the diffi-
culty was changed in this environment was by modifying the
number of food sources available at any given time-step. In
a ten by ten grid, the hardest difficulty had one food source,
whilst the easiest had fifty.

In this environment, the performance function used was
the survival time of the agent rather than the reward func-
tion. This is motivated by the fact that in this environment
the average collected reward is not a good indication of the
quality of the agent’s policy.

To better explain this we can show how two similar poli-
cies, A and B, would be misevaluated by using the cumu-
lative reward as a metric. Let policy A always result in the
agent surviving 99 time-steps without gathering food, but get-
ting eaten just before starving; and let policy B always result
in the agent surviving 100 time-steps without gathering food
and starving as a result. Qualitatively, the two policies are al-
most equivalent: in fact the only difference between the two
is that when following policy B, an agent would evade the
predator one extra time-step. However, the average reward



policy A gathers during an episode is -2.01, whereas policy
B gathers an average reward of -1. Therefore if we use the
reward as a metric we would erroneously conclude that pol-
icy B is significantly better than policy A, but as we stated
above, the two policies are qualitatively almost equivalent.

Therefore the metric used in the plots for this environment
is the average survival time. Conversely, the metric used in
the tables is the integral of the curve representing the average
survival time, which gives an indication of the performance
of the agent throughout the whole training process. To better
compare the performance of various decay functions, the re-
sults were obtained through testing the agent on the hardest
version of the environment after every batch.

4.2 Half Field Offense

The second test domain for our Continuous Curriculum is a
classic multi-agent problem: Half Field Offense [Hausknecht
et al., 2016]. In this domain, the agents control players be-
longing to the attacking team on a football pitch, with the
objective to score a goal against the defending team. The
playing area is restricted to half of the pitch, and the number
of players on each team is set to two.

The state space for this environment is the “High level”
state space described in [Hausknecht er al., 2016], which is
composed of 24 features. The action space, for the tests
we conducted, was a subset of the “High-level action set”
[Hausknecht et al., 20161, where the actions were restricted
to "Move”, “Pass”, ”Shoot”, ”Go_to_ball”. Originally com-
mands for movement were divided into "Move” and “Drib-
ble”, however in our experiments, if the agent chooses the ac-
tion "Move” and has the ball, they will automatically ”Drib-
ble”. If the agent tries to ”Shoot” or ”Pass” when they do not
have the ball, they will not act for that time-step. The reward
function awards the agent a utility of 5 for scoring a goal, and
-1 when the ball goes out of bounds, is captured by the de-
fence, or the episode times out. Finally, a reward of -0.005 is
awarded at every time-step, to encourage the agent to score
as quickly as possible.

The way the difficulty was changed in this environment
was by adjusting the distance at which the ball spawns from
the goal and whether an agent is initialised on the ball or it
has to move to the ball before passing or shooting. The per-
formance function used for the Friction-Based decay on this
environment is the reward function with its minimum clipped
at -0.005. This was chosen to prevent an agent being per-
ceived as improving if they never shoot, as they would expe-
rience fewer negative rewards rather than always losing the
ball to the defence or shooting the ball out of bounds.

Note that this version of Half Field Offense differs from the
one used in Narvekar et al. [Narvekar et al., 2016]. Here both
the agent with the ball and the one without the ball are learn-
ing, and have a greater state and action space, which makes
the problem more challenging.

The metric used in the plots for this environment is the av-
erage scoring probability, while the metric used in the tables
is the maximum scoring probability throughout the training.
In HFO, the performance in the first 1,000,000 time-steps (be-
fore the red line in the plots) should be considered as only an
indication when comparing different decay methods. This is

—— High Granularity
Low Granularity

800 +

600

400

Survival Time

200

T T T T T T T T T
0 100000 200000 300000 400000 500000 600000 700000 800000
Timesteps

Figure 1: Effect of granularity in Predator-Prey

0.5
—— High Granularity

Low Granularity
0.4

Goal Probability
o
w

o
9

0.14

T T T T
0 500000 1000000 1500000 2000000

Timesteps

Figure 2: Effect of granularity in HFO

because the reported performance was obtained during the
training, so the difficulty of the environment at a certain time
will vary from method to method.

5 Results

In this results section we show the performance of the decay
functions mentioned above, as well as answer two questions:

1. Does using a Continuous Curriculum improve the
agent’s performance over a discrete one?

2. What are the benefits of using Friction-Based decay over
a Fixed decay function?

5.1 Granularity

To answer the first question, we analyse the effects of chang-
ing the granularity of the Curriculum and therefore assert why
a Continuous Curriculum is needed. Experiments were con-
ducted on both of the test domains outlined above, comparing
two curricula generated by the same decay function, but with
different granularities. In both test domains, the less granular
Curriculum is equivalent to a Discrete Curriculum with five
sub-tasks; while the more granular Curriculum is equivalent
to a Continuous Curriculum.

The first environment granularity was tested on was the
Predator-Prey environment. For this test, the highest per-
forming Curriculum on that environment, Friction-Based de-
cay, was tested in two versions. The version with the high



granularity updates the difficulty at the end of every episode;
whereas the version with the lower granularity updates the
difficulty five times during the decay. As you can see in
Figure 1 and Table 1 the Curriculum with a high granularity
clearly outperforms the other in all stages of the training.

For further comparison when testing the effect of changing
the granularity of the Curriculum on HFO, the decay function
used was the Exponential decay. This is because the effects
of changing granularity on the Friction-based decay have al-
ready been outlined above, and were consistent with the re-
sults in the Predator-Prey environment. As evident in Figure 2
and Table 1, our results show that the agents training with the
higher Curriculum granularity again outperformed the ones
training with a lower granularity.

Our experiments on both domains demonstrated a more
granular Curriculum resulted in a higher survival time in the
Predator-Prey environment, and a higher chance of scoring
a goal in HFO. Therefore answering the first question posed
earlier: it is indeed beneficial to use a Continuous Curriculum
over a Discrete one.

Granularity ‘ Pred. Prey 2v2 HFO ‘
High (4.774 £0.064) * 105 46.0 £1.8
Low (3.797 £0.058) x 105 42.0 +1.9

Table 1: The effects of changing granularity

—— Baseline
Linear

800 1 —— Exponential

—— Friction-Based

600 1

400 -

Survival Time

200 1

./

T T T T T T T T T
] 100000 200000 300000 400000 500000 600000 700000 800000
Timesteps

Figure 3: Different Curricula in Predator-Prey

o054 Baseline
Linear
—— Exponential
—— Friction-Based
0.4

Goal Probability
=]
w
)

e
]
L

0.1 4

0.04

T T
1000000 1500000 2000000

Timesteps

T T
0 500000

Figure 4: Different Curricula in HFO

5.2 Different Continuous Curricula

This section will present the results that each decay function
introduced in this paper achieved when tested on the two test
environments.

In the Predator-Prey environment, the Adaptive decay
clearly performed best overall, followed by the Exponential
decay, the Linear decay, and finally, standard RL used as a
baseline. The increase in performance over normal RL is ex-
pected since using a Curriculum is known to be beneficial to
the learning of the agent. Furthermore, the Exponential decay
outperforming the Linear decay was unsurprising, as it can
perfectly replicate one; therefore, always generating results
at least equal to the Linear decay. However, what is inter-
esting is the Adaptive decay outperforming the Exponential
decay, which shows the benefits of having a decay function
utilising the performance of the agent.

In Half Field Offense the results were mirrored, with Adap-
tive decay performing best, followed by Exponential, Linear,
and finally the baseline. It is interesting to note that a higher
performing decay function not only results in a better perfor-
mance but also a decrease in the standard error.

It is worth noting that finding the parameters for the Adap-
tive decay is a less time-consuming process, compared to the
Exponential decay. In fact, often analysing a previous test run
(even from the baseline) is sufficient to correctly estimate the
object’s weight given a certain length. On the other hand, the
only way to find a good parameter for the Exponential decay
is through trial and error. The main benefit of using Friction-
Based decay over the other decay functions is therefore a sim-
ple parameter selection process and a higher performance.

Decay ‘ Pred. Prey 2v2 HFO
Frcition-Based | (4.774 £0.064) * 105 50.2 +1.4
Exponential (4.470 £0.063) x 105 46.0 +-1.8
Linear (3.880 £0.058) x 105  40.4 +3.5
None (1.226 £0.395) * 105 30.2 +4.7

Table 2: Comparison of different Curricula

6 Conclusions and Outlooks

In this paper we defined the concept of a Continuous Cur-
riculum and provided its mathematical foundation by extend-
ing the existing Curriculum Learning framework [Narvekar
et al., 2016]. Furthermore, we discussed how a Continuous
Curriculum is created, through different decay functions, and
provided a way to create a Curriculum with minimal human
supervision through the Friction-Based decay (where only a
Mapping function has to be provided). Based on our exper-
iments we also found this type of decay to be the best per-
forming one in both our test domains. In the future we intend
to expand the current work by:

1. Automatically deriving the Mapping function ®(\)
2. Automatically deriving the difficulty ordering O.



References

[Bengio et al., 2009] Yoshua Bengio, Jérdme Louradour,
Ronan Collobert, and Jason Weston. Curriculum learn-
ing. In Proceedings of the 26th annual international con-
ference on machine learning, pages 41-48. ACM, 2009.

[Da Silva and Costa, 2018] Felipe Leno Da Silva and Anna
Helena Reali Costa. Object-oriented curriculum genera-
tion for reinforcement learning. In International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-

MAS), 2018.

[Dhariwal et al., 2017] Prafulla  Dhariwal,  Christopher
Hesse, Oleg Klimov, Alex Nichol, Matthias Plap-
pert, Alec Radford, John Schulman, Szymon Sidor,
Yuhuai Wu, and Peter Zhokhov. Openai baselines.
https://github.com/openai/baselines, 2017.

[Hausknecht et al., 2016] Matthew Hausknecht, Prannoy
Mupparaju, and Sandeep Subramanian. Half field offense:
An environment for multiagent learning and ad hoc team-
work. 2016.

[Narvekar et al., 2016] Sanmit Narvekar, Jivko Sinapov,
Matteo Leonetti, and Peter Stone. Source task creation
for curriculum learning. In Proceedings of the 2016 Inter-
national Conference on Autonomous Agents & Multiagent
Systems, pages 566—574. International Foundation for Au-
tonomous Agents and Multiagent Systems, 2016.

[Narvekar et al., 2017] Sanmit Narvekar, Jivko Sinapov, and
Peter Stone. Autonomous task sequencing for customized
curriculum design in reinforcement learning. 2017.

[Svetlik ef al., 2017] Maxwell Svetlik, Matteo Leonetti,
Jivko Sinapov, Rishi Shah, Nick Walker, and Peter Stone.
Automatic curriculum graph generation for reinforcement
learning agents. 2017.


https://github.com/openai/baselines

	Introduction
	Background
	Curriculum Learning
	Curriculum Learning in RL

	Continuous Curriculum Learning
	Framework Definition
	Continuous Curriculum
	Decay Functions
	Fixed decay
	Adaptive decay

	Curriculum Granularity

	Experimental Setting
	Predator-Prey Environment
	Half Field Offense

	Results
	Granularity
	Different Continuous Curricula

	Conclusions and Outlooks

