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Abstract
In this paper, a new adaptive multi-batch experi-
ence replay scheme is proposed for proximal pol-
icy optimization (PPO) for continuous action con-
trol. On the contrary to original PPO, the proposed
scheme uses the batch samples of past policies as
well as the current policy for the update for the next
policy, where the number of the used past batches
is adaptively determined based on the average im-
portance sampling (IS) weight. The new algo-
rithm constructed by combining PPO with the pro-
posed multi-batch experience replay scheme main-
tains the advantages of original PPO such as ran-
dom mini-batch sampling and small bias due to low
IS weights by storing the pre-computed advantages
and values and adaptively determining the mini-
batch size. Numerical results show that the pro-
posed method significantly increases the speed and
stability of convergence on various continuous con-
trol tasks compared to original PPO.

1 Introduction
Reinforcement learning (RL) aims to optimize the policy for
the cumulative reward in a Markov decision process (MDP)
environment. SARSA and Q-learning are well-known RL al-
gorithms for learning finite MDP environments, which store
all Q values as a table and solve the Bellman equation
[Watkins and Dayan, 1992; Rummery and Niranjan, 1994;
Sutton and Barto, 1998]. However, if the state space of en-
vironment is infinite, all Q values cannot be stored. Deep
Q-learning (DQN) [Mnih et al., 2013] solves this problem by
using a Q-value neural network to approximate and general-
ize Q-values from finite experiences, and DQN is shown to
outperform the human level in Atari games with discrete ac-
tion spaces [Mnih et al., 2015]. For discrete action spaces,
the policy simply can choose the optimal action that has the
maximum Q-value, but this is not possible for continuous ac-
tion spaces. Thus, policy gradient (PG) methods that param-
eterize the policy by using a neural network and optimize the
parameterized policy to choose optimal action from the given
Q-value are considered for continuous action control [Sutton
et al., 2000]. Recent PG methods can be classified mainly
into two groups: 1) Value-based PG methods that update the

policy to choose action by following the maximum distribu-
tion or the exponential distribution of Q-value, e.g., deep de-
terministic policy gradient (DDPG) [Lillicrap et al., 2015],
twin-delayed DDPG (TD3) [Fujimoto et al., 2018], and soft-
actor critic (SAC) [Haarnoja et al., 2018], and 2) importance
sampling(IS)-based PG methods that directly update the pol-
icy to maximize the discounted reward sum by using IS, e.g.,
trust region policy optimization (TRPO) [Schulman et al.,
2015a], actor-critic with experience replay (ACER) [Wang et
al., 2016], PPO [Schulman et al., 2017]. Both PG methods
update the policy parameter by using stochastic gradient de-
scent (SGD), but the convergence speed of SGD is slow since
the gradient direction of SGD is unstable. Hence, increasing
sample efficiency is important to PG methods for fast con-
vergence. Experience replay (ER), which was first consid-
ered in DQN [Mnih et al., 2013], increases sample efficiency
by storing old sample from the previous policies and reusing
these old samples for current update, and enhances the learn-
ing stability by reducing the sample correlation by sampling
random mini-batches from a large replay memory. For value-
based PG methods, ER can be applied without any modifica-
tion, so state-of-the-art value-based algorithms (TD3, SAC)
use ER. However, applying ER to IS-based PG methods is a
challenging problem. For IS-based PG methods, calibration
of the statistics between the sample-generating old policies
and the policy to update is required through IS weight multi-
plication [Degris et al., 2012], but using old samples makes
large IS weights and this causes large variances in the empir-
ical computation of the loss function. Hence, TRPO and PPO
do not consider ER, and ACER uses clipped IS weights with
an episodic replay to avoid large variances, and corrects the
bias generated from the clipping [Wang et al., 2016].

In this paper, we consider the performance improvement
for IS-based PG methods by reusing old samples appropri-
ately based on IS weight analysis and propose a new adap-
tive multi-batch experience replay (MBER) scheme for PPO,
which is currently one of the most popular IS-based PG algo-
rithms. PPO applies clipping but ignores bias, since it uses the
sample batch (or horizon) only from the current policy with-
out replay and hence the required IS weight is not so high. In
contrast to PPO, the proposed scheme uses the batch samples
of past policies as well as the current policy for the update
for the next policy, and preserves most advantages of PPO
such as random mini-batch sampling and small bias due to



low IS weights. The details of the proposed algorithm will be
explained in coming sections.

2 Background
2.1 Reinforcement Learning Problems
In this paper, we assume that the environment is an MDP.
< S, A, γ, P, r > defines a discounted MDP, where S is the
state space, A is the action space, γ is the discount factor, P
is the state transition probability, and r is the reward function.
For every time step t, the agent chooses an action at based on
the current state st and then the environment gives the next
state st+1 according to P and the reward rt = r(st, at) to
the agent. Reinforcement learning aims to learn the agent’s
policy π(at|st) that maximizes the average discounted return
J = Eτ0∼π[

∑∞
t=0 γ

trt], where τt denotes a state-action tra-
jectory from time step t: (st, at, st+1, at+1, · · · ).

2.2 Policy Gradient Methods
Q-learning is a widely-used reinforcement learning algorithm
based on the state-action value function (Q-function). The
state-action value function represents the expected return of a
state-action pair (st, at) when a policy π is used, and is de-
noted by Qπ(st, at) = Eτt∼π[

∑∞
l=t γ

lrl] [Sutton and Barto,
1998]. However, Q-learning is focused on learning a dis-
crete action space. To learn a continuous action environ-
ment, PG directly parameterizes the policy by a stochastic
policy network πθ(at|st) with parameter θ and sets an ob-
jective function L(θ) to optimize the policy based on pol-
icy gradient theorem [Sutton et al., 2000]: Value-based PG
methods set L(θ) as the policy follows some distribution
of Q-function [Lillicrap et al., 2015; Fujimoto et al., 2018;
Haarnoja et al., 2018], and IS-based PG methods set L(θ) as
the discounted return and directly updates the policy to max-
imize L(θ) [Schulman et al., 2015a; Schulman et al., 2017].

2.3 IS-based PG and PPO
At each iteration, IS-based PG such as ACER and simple
PPO1 tries to obtain a better policy πθ̃ from the current policy
πθ [Schulman et al., 2015a]:

Lθ(θ̃) , Est∼ρπθ , at∼πθ̃ [Aπθ (st, at)]

= Est∼ρπθ , at∼πθ
[
Rt(θ̃)Aπθ (st, at)

]
, (1)

where Aπθ (st, at) = Qπθ (st, at)− Vπθ (st) is the advantage
function, Vπ(st) = Eat,τt+1∼π[

∑∞
l=t γ

lrl] is the state-value
function, and Rt(θ̃) =

πθ̃(at|st)
πθ(at|st) is the IS weight. Here, the

objective function Lθ(θ̃) is a function of θ̃ for given θ, and θ̃
is the optimization variable. To compute Lθ(θ̃) empirically
from the samples from the current policy πθ, the IS weight
is multiplied. That is, with Rt(θ̃) multiplied to Aπθ (st, at),
the second expectation in (1) is over the trajectory generated
by the current policy πθ not by the updated policy πθ̃. Here,
large IS weights cause large variances in (1), so ACER and

1We only consider simple PPO without adaptive KL penalty
since simple PPO has the best performance on continuous action
control tasks [Schulman et al., 2017].

PPO bound or clip the IS weight [Schulman et al., 2017;
Wang et al., 2016]. In this paper, we use the clipped impor-
tant sampling structure of PPO as our baseline. The objective
function with clipped IS weights becomes

LCLIP (θ̃) = Est, at∼πθ
[
min{Rt(θ̃)Ât, clipε(Rt(θ̃))Ât}

]
,

(2)
where clipε(·) = max(min(·, 1 + ε), 1 − ε) with clipping
factor ε, and Ât is the sample advantage function estimated
by the generalized advantage estimator (GAE) [Schulman et
al., 2015b]:

Ât =

N−n−1∑
l=0

(γλ)lδt+l, (3)

where N is the number of samples in one iteration (horizon),
δt = rt + γVw(st+1) − Vw(st) with the state-value network
Vw(st) which approximates Vπθ (st). Then, PPO updates the
state-value network to minimize the square loss:

LV (w) = (Vw(st)− V̂t)2, (4)

where V̂t is the TD(λ) return [Schulman et al., 2017].
In [Schulman et al., 2017], for continuous action control, a

Gaussian policy network is considered, i.e.,

at ∼ πθ(·|st) = N (µ(st;φ), σ
2), (5)

where µ(st;φ) is the mean neural network whose input is st
and parameter is φ; σ is a standard deviation parameter; and
thus θ = (φ, σ) is the overall policy parameter.

3 Related Work
3.1 Experience Replay on Q-Learning
Q-learning is off-policy learning which only requires sam-
pled tuples to compute the TD error [Sutton and Barto, 1998].
DQN uses the ER technique [Lin, 1993] that stores old sam-
ple tuples (st, at, rt, st+1) in replay memory R and updates
the Q-network with the average gradient of the TD error com-
puted from a mini-batch uniformly sampled from R. Value-
based PG methods adopt this basic ER of DQN. As an exten-
sion of this basic ER, [Schaul et al., 2015] considered priori-
tized ER to give a sampling distribution on the replay instead
of uniform random sampling so that samples with higher TD
errors are used more frequently to obtain the optimal Q faster
than DQN. [Liu and Zou, 2017] analyzed the effect of the re-
play memory size on DQN and proposed an adaptive replay
memory scheme based on the TD error to find a proper re-
play size for each discrete task. It is shown that this adaptive
replay size for DQN enhances the overall performance.

3.2 Experience Replay on IS-based PG
ER can be applied to IS-based PG for continuous action con-
trol to increase sample efficiency. As seen in (1), the mul-
tiplication of the IS weight Rt(θ̃) =

πθ̃(at|st)
πθ(at|st) is required to

use the samples from old policies for current policy update.
In case that ER uses samples from many previous policies,
the required IS weight is very large and this induces bias even



though clipping is applied. The induced bias makes the learn-
ing process unstable and disturbs the computation of the ex-
pected loss function. Thus, ACER uses ER with bias correc-
tion, and proposes an episodic ER scheme that samples and
stores on the basis of episodes because it computes an off-
policy correction Q-function estimator which requires whole
samples in a trajectory as Algorithm 3 in [Wang et al., 2016].

4 Multi-Batch Experience Replay
4.1 Batch Structures of ACER and PPO
Before introducing our new replay scheme, we compare the
batch description of ACER and PPO for updating the pol-
icy, as shown in Fig. 1. ACER uses an episodic ER to
increase sample efficiency. In the continuous action case,
ACER stores trajectories from V = 100 previous policies
and each policy generates a trajectory of M = 50 time steps
in replay memory R. For each update period, ACER chooses
W ∼ Poisson(4) random episodes from R to update the
policy. Then, different statistics among the samples in the re-
play causes bias, and the episodic sample mini-batch is highly
correlated. On the other hand, PPO does not use ER but col-
lects a single batch of sizeN = 2048 time steps from the cur-
rent policy. Then, PPO draws a mini-batch of size M = 64
randomly and uniformly from the single batch; updates the
policy to the direction of the gradient of the empirical loss
computed from the drawn mini-batch:

L̂CLIP (θ̃) =
1

M

M−1∑
m=0

min{Rm(θ̃)Âm, clipε(Rm(θ̃))Âm};

(6)
and updates the value network to the direction of the negative
gradient of

L̂V (w) =
1

M

M−1∑
m=0

(Vw(sm)− V̂m)2, (7)

where Âm, Rm(θ̃), Vw(sm), and V̂m are values correspond-
ing to the m-th sample in the mini-batch [Schulman et al.,
2017]. This procedure is repeated for 10 epochs for a single
batch of size N . Here, 1 epoch means that we use every sam-
ples in the batch to update it once. In other words, PPO up-
dates the policy by drawing 10·N/M mini-batches. Note that
PPO uses current samples only, so it can ignore bias because
the corresponding IS weights do not exceed the clipping fac-
tor mostly. Furthermore, the samples in a mini-batch drawn
uniformly from the total batch of size N in PPO have little
sample correlation because they are scattered over the total
batch. However, PPO discards all samples from all the past
policies except the current policy for the next policy update
and this reduces sample efficiency.

4.2 The Proposed Multi-Batch Experience Replay
Scheme

We now present our MBER scheme suitable to PPO-style IS-
based PG, which increases sample efficiency, maintains ran-
dom mini-batch sampling to diminish the sample correlation,
and reduces the IS weight to avoid bias. We apply our MBER

scheme to PPO to construct an enhanced algorithm named
PPO-MBER, which includes PPO as a special case.

In order to obtain the next policy, the proposed scheme
uses the batch samples of L− 1 past policies and the current
policy, whereas original PPO uses the batch samples from
only the current policy, as illustrated in Fig. 1. In Fig. 1,
the different colors indicate samples from the different sam-
ple batches. The stored information for MBER in the replay
memory R is as follows. To compute the required IS weight
Rt(θ̃) =

πθ̃(at|st)
πθ(at|st) for each sample in a random mini-batch,

MBER stores the statistical information of every sample in R.
Under the assumption of a Gaussian policy network (5), the
required statistical information for each sample is the mean
µt := µ(st;φ) and the standard deviation σ. Furthermore,
MBER stores the pre-calculated estimated advantage Ât and
target value V̂t of every sample in R. Thus, MBER stores the
overall sample information (st, at, Ât, V̂t, µt, σ) regarding
the batch samples from the most recent L policies, as de-
scribed in Fig. 1. The storage of the statistical information
(µt, σ) and the values (Ât, V̂t) in addition to (st, at) for ev-
ery sample in the replay memory makes it possible to draw
a random mini-batch from R not a trajectory like in ACER.
Since the policy at the i-th iteration generates a batch of N
samples, we can rewrite the stored information by using two
indices i = 0, 1, · · · and n = 0, 1, · · · , N − 1 (such that time
step t = iN +n) as {Bi−L+1, · · · , Bi} from the most recent
L policies i, i− 1, · · · , i− L+ 1, where

Bi = (si,n, ai,n, Âi,n, V̂i,n, µi,n, σi), n = 0, · · · , N − 1.
(8)

In addition to using the batch samples from most recent L
policies, MBER enlarges the mini-batch size by L times com-
pared to that of original PPO, to reduce the average IS weight.
If we set the mini-batch size of MBER to be the same as that
of PPO with the same epoch, then the number of updates of
PPO-MBER is L times larger than that of PPO. Then, the
updated policy statistic is too much different from the cur-
rent policy statistic and thus the average IS weight becomes
large as L increases. This causes bias and is detrimental to
the performance. To avoid this, we enlarge the mini-batch
size of MBER by L times and this reduces the average IS
weight by making the number of updates the same as that of
PPO with the same epoch. In this way, MBER can ignore
bias without much concern, because its IS weight is similar
to that of PPO. Fig. 2 shows the average IS weight2 of all
sampled mini-batches at each iteration when M = 64 and
M = 64× L. It is seen that PPO-MBER maintains the same
level of the important sampling weight as original PPO.

5 Adaptive Batch Drop
PPO-MBER can significantly enhance the overall perfor-
mance compared to PPO by using the MBER scheme, as seen
in Section 7. However, we observe that the PPO-MBER per-
formance for each task depends on the replay length L, and
hence the choice of L is crucial to PPO-MBER. For the two

2Actually, we averaged abs(1 − Rm(θ̃)) + 1 instead of Rm(θ̃)
to see the degree of deviation from 1.
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Figure 1: Batch construction of ACER, PPO and PPO with the proposed MBER (PPO-MBER): N = 8 and M = 2.
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Figure 2: Average IS weight of BipedalWalkerHardcore for PPO-
MBER: (Left) M = 64, ε = 0.2 and (Right) M = 64L, ε = 0.2

extreme examples, Pendulum and Humanoid whose dimen-
sions are 1 and 17 respectively, note that the performance of
Pendulum is proportional to the replay length but the perfor-
mance of Humanoid is inversely proportional to the replay
length as in Fig. 5. To analyze the cause of this phenomenon,
we define the batch average IS weight between the old policy
θi−l and the current policy θi as

R′i,l =
1

N

N−1∑
n=1

1 + abs

(
1− πθi(ai−l,n|si−l,n)

πθi−l(ai−l,n|si−l,n)

)
, (9)

where ai−l,n, si−l,n ∈ Bi−l. Note that this is different from
the average of 1 + abs(1 − Rm(θ̃)) which depends on the
updating policy πθ̃ not the current policy πθi . Fig. 3 shows
R′i,l of PPO-MBER for Pendulum and Humanoid tasks. It
is seen that R′i,l increases as l increases, because the batch
statistic is updated as iteration goes on. It is also seen that
Humanoid has ”large” R′i,l and Pendulum has ”small” R′i,l.
From the two examples, it can be inferred that the batch sam-
ples Bi−l with large R′i,l are too old for updating θ̃ at the
current policy parameter θi and can harm the performance, as

in the case of Humanoid. On the other hand, if R′i,l is small,
more old samples can be used for update and this is bene-
ficial to the performance. Therefore, it is observed in Table
1 that original PPO, i.e., L = 1 is best for Humanoid and
PPO-MBER with L = 8 is best for Pendulum (In Table 1, we
only consider L up to 8). Exploiting this fact, we propose an
adaptive MBER (AMBER) scheme which adaptively chooses
the batches to use for update from the replay memory. In the
proposed AMBER, we store the batch samples from policies
θi, θi−1, · · · , θi−L+1, but use only the batches Bi−l’s whose
R′i,l is smaller than the batch drop factor εb. Since R′i,l in-
creases as time goes, AMBER uses the most recent L′ sample
batches whose R′i,l is less than εb. It is seen in Table 1 that
PPO-AMBER well selects the proper replay length.
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Figure 3: Batch average weight R′
i,l of PPO-MBER (L = 8, ε =

0.4): (Left) Pendulum and (Right) Humanoid

6 The Algorithm
Now, we present our proposed algorithm PPO-(A)MBER that
maximizes the objective function L̂CLIP (θ̃) in (6) for contin-
uous action control. We assume the Gaussian policy network
πθ̃ in (5) and the value network Vw. (They do not share pa-



rameters.) We define the overall parameter θ̃ALL combining
the policy parameter θ̃ and the value parameter w. The objec-
tive function is given by [Schulman et al., 2017]

L̂(θ̃ALL) = L̂CLIP (θ̃)− cvL̂V (w), (10)

where L̂CLIP (θ̃) is in (6), L̂V (w) is in (7), and cv is a con-
stant (we use cv = 1 in the paper). The detailed algorithm is
summarized as A.1. in supplementary material.

7 Experiments
7.1 Environment Description and Parameter

Setup
To evaluate our ER scheme, we conducted numeri-
cal experiments on OpenAI GYM environments [Brock-
man et al., 2016]. We selected continuous action
control environments of GYM: Mujoco physics engines
[Todorov et al., 2012] (HalfCheetah, Huamnoid, Inverted-
DobulePendulum, Pendulum, Swimmer, Walker2d), clas-
sical control (Pendulum), and Box2D (BipedalWalker,
BipedalWalkerHardcore)[Catto, 2011]. The dimensions of
state and action for each task are described in Section
A.2. of supplementary material. We provide the sup-
plementary material for source code, various descriptions
and additional experimental results which is available at:
https://www.dropbox.com/sh/bvvyvosebfs96to/AAB0wK9q
m3yNC7OAri01s76oa?dl=0.

We used PPO baselines of OpenAI [Dhariwal et al., 2017]
and compared the performance of PPO-(A)MBER with vari-
ous replay lengths L = 1 (PPO), 2, 4, 6, 8 on various Mujoco
continuous action control tasks. The detailed parameters of
PPO/PPO-MBER are described in Section A.2. of supple-
mentary material. Adam step size β and clipping factor ε
decay linearly as time-step goes on from the initial values to
0. The Gaussian mean network and the value network are
feed-forward neural networks that have 2 hidden layers of
size 64 like in [Schulman et al., 2017]. For all the perfor-
mance plots/tables in this paper, we averaged 10 simulations
per each task with random seeds. For each performance plot,
the X-axis is time step, the Y -axis is the average return of
the lastest 100 episodes at each time step, and the line in the
plot is the mean score of 10 random seeds. For each perfor-
mance table, results are described as the mean± one standard
deviation of 10 seeds and the best scores are in boldface.

7.2 Performance and Ablation Study of
PPO-MBER

In [Schulman et al., 2017], the optimal clipping factor is 0.2
for PPO. However, it depends on the task set. Since our task
set is a bit different from that in [Schulman et al., 2017], we
first evaluated the performance of PPO and PPO-MBER by
sweeping the clipping factor from ε = 0.2 to ε = 0.7 whose
results are summarized in Section A.3. of supplementary ma-
terial. We observe that loosening the clipping factor a bit
is beneficial for both PPO and PPO-MBER in the consid-
ered set of tasks, especially PPO-MBER with larger replay
lengths. This is because loosening the clipping factor reduces
the bias and increases the variance of the loss expectation,

but a larger mini-batch of PPO-MBER reduces the variance
by offsetting3. However, too large a clipping factor harms the
performance. As a results, the best clipping factor is ε = 0.3
for PPO and ε = 0.4 for PPO-MBER. The detailed final score
for each task for PPO and PPO-MBER with the best clipping
factors is given in Table. 1. PPO sometimes fails to per-
fectly learn the environment as the number of random seeds
increases from 3 of [Schulman et al., 2017] to 10 of ours, but
PPO-MBER learns all environments more stably since it aver-
ages more samples based on enlarged mini-batches, so there
is a large performance gap in this case. It is observed that in
most environments, PPO-MBER with proper L significantly
enhances both the final performance results as compared to
PPO.

We then investigated the performance of random mini-
batches versus episodic mini-batches for PPO-MBER with
L = 2, ε = 0.4. In the episodic case, we draw each
mini-batch by picking a consequent trajectory of size M
like ACER. Fig. 4 shows the results under HalfCheetah and
Swimmer environments. It is seen that there is a notable per-
formance gap between the two cases. This means that ran-
dom mini-batch drawing from the replay memory storing pre-
computed advantages and values in MBER has the advantage
of reducing the sample correlation in a mini-batch and this is
beneficial to the performance.
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Figure 4: Performance comparison of HalfCheetah and Swimmer
for PPO-MBER (L = 2, ε = 0.4) with uniformly random mini-
batch and episodic mini-batch

7.3 Performance of PPO-AMBER
From the ablation study in the previous subsection, we set ε =
0.4, which is good for a wide range of tasks, and set L = 8 as
the maximum replay size for PPO-AMBER. PPO-AMBER
shrinks the mini-batch size as M = 64 × # of active batches
as described in previous section. The batch drop factor εb is
linearly annihilated from the initial value to zero as time step
goes on. To search for optimal batch drop factor, we again
sweep the initial value of the batch drop factor from 0.1 to
0.3 and conclude that εb = 0.25 is the best. In addition, Fig.
6 shows the number of active batches of PPO-AMBER for
various batch drop factors for Pendulum and BipedalWalker-
Hardcore tasks, and εb = 0.25 can select appropriate number
of batches for both tasks. Fig. 5 show the performance of
PPO (ε = 0.3), PPO-MBER (ε = 0.4), and PPO-AMBER

3One may think that PPO with a large mini-batch size also has
the same effect, but enlarging the mini-batch size without increasing
the replay memory size increases the sample correlation and reduces
the number of updates too much, so it is not helpful for PPO.

https://www.dropbox.com/sh/bvvyvosebfs96to/AAB0wK9qm3yNC7OAri01s76oa?dl=0
https://www.dropbox.com/sh/bvvyvosebfs96to/AAB0wK9qm3yNC7OAri01s76oa?dl=0
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Figure 5: Performance comparison on continuous control tasks for parameter-tuned setup

Table 1: Average return of final 100 episodes of parameter-tuned PPO, PPO-MBER and PPO-AMBER

PPO PPO-MBER
(L = 2)

PPO-MBER
(L = 4)

PPO-MBER
(L = 6)

PPO-MBER
(L = 8)

PPO-AMBER

BipedalWalker 236± 26 276± 16 275± 19 261± 13 225± 75 265± 16
BipedalWalkerHardcore −93.5± 10.8 −77.9± 20.8 −80.7± 18.4 −73.2± 18.8 −78.1± 15.8 −73.5± 10.7
HalfCheetah 1910± 778 2113± 874 1803± 611 1549± 562 1745± 529 2258± 1039
Humanoid 600± 43 578± 41 534± 34 521± 24 480± 14 613± 67
InvertedDoublePendulum 8167± 630 8588± 271 8407± 305 8402± 209 8587± 208 8406± 363
Pendulum −683± 494 −463± 391 −286± 306 −161± 7 −160± 8 −155± 12
Swimmer 68.4± 19.0 83.9± 21.5 92.3± 21.5 97.1± 24.5 101.6± 26.2 102.9± 26.4
Walker2d 3065± 532 3264± 577 3348± 498 3196± 429 3223± 445 3415± 416

(L = 8, ε = 0.4, εb = 0.25) on various tasks. Additional
performance scores of other Mujoco environments and vari-
ous parameter setup are given by A.3. in supplementary ma-
terial. It is seen that PPO-AMBER with εb = 0.25 automati-
cally selects almost optimal replay size from L = 1 to L = 8.
So, with PPO-AMBER one need not be concerned about de-
signing the replay memory size for the proposed ER scheme,
and it significantly enhances the overall performance. We ad-
ditionally compared the performance of PPO-AMBER with
other PG methods (TRPO, ACER) in Section A.4. of supple-
mentary material, and it is observed that PPO-AMBER out-
performs both TRPO and ACER.

7.4 Further Discussion

It is observed that PPO-AMBER enhances the performance of
tasks with low action dimensions compared to PPO by using
old sample batches, but it is hard to improve tasks with high
action dimensions. This is because higher action dimensions
yields larger IS weights. Hence, we provide an additional
IS analysis for those environments in Section A.5. of sup-
plementary material. The analysis suggests that AMBER fits
to low action dimensional tasks or sufficiently small learning
rates to prevent the IS weights from becoming too large.
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Figure 6: The number of active batches of Pendulum and Bipedal-
WalkerHardcore for PPO-AMBER with various εb

8 Conclusion
In this paper, we have proposed a MBER scheme for PPO-
style IS-based PG, which significantly enhances the speed
and stability of convergence on various continuous control
tasks (Mujoco tasks, classic control, and Box2d on OpenAI
GYM) by 1) increasing the sample efficiency without caus-
ing much bias by fixing the number of updates and reducing
the IS weight, 2) reducing the sample correlation by draw-
ing random mini-batches with the pre-computed and stored
advantages and values, and 3) dropping too old samples in
the replay memory adaptively. Numerical results show that
PPO-AMBER significantly improves original PPO.



Acknowledgements
This work was supported in part by the ICT R&D pro-
gram of MSIP/IITP (2016-0-00563, Research on Adaptive
Machine Learning Technology Development for Intelligent
Autonomous Digital Companion) and in part by the Na-
tional Research Foundation of Korea(NRF) grant funded by
the Korea government(Ministry of Science and ICT) (NRF-
2017R1E1A1A03070788).

References
[Brockman et al., 2016] Greg Brockman, Vicki Cheung,

Ludwig Pettersson, Jonas Schneider, John Schulman, Jie
Tang, and Wojciech Zaremba. Openai gym. arXiv preprint
arXiv:1606.01540, 2016.

[Catto, 2011] Erin Catto. Box2d: A 2d physics engine for
games, 2011.

[Degris et al., 2012] Thomas Degris, Martha White, and
Richard S Sutton. Off-policy actor-critic. arXiv preprint
arXiv:1205.4839, 2012.

[Dhariwal et al., 2017] Prafulla Dhariwal, Christopher
Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert, Alec
Radford, John Schulman, Szymon Sidor, and Yuhuai Wu.
Openai baselines. https://github.com/openai/baselines,
2017.

[Fujimoto et al., 2018] Scott Fujimoto, Herke van Hoof, and
Dave Meger. Addressing function approximation error in
actor-critic methods. arXiv preprint arXiv:1802.09477,
2018.

[Haarnoja et al., 2018] Tuomas Haarnoja, Aurick Zhou,
Pieter Abbeel, and Sergey Levine. Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning
with a stochastic actor. arXiv preprint arXiv:1801.01290,
2018.

[Lillicrap et al., 2015] Timothy P Lillicrap, Jonathan J Hunt,
Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous con-
trol with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

[Lin, 1993] Long-Ji Lin. Reinforcement learning for robots
using neural networks. Technical report, Carnegie-Mellon
Univ Pittsburgh PA School of Computer Science, 1993.

[Liu and Zou, 2017] Ruishan Liu and James Zou. The ef-
fects of memory replay in reinforcement learning. arXiv
preprint arXiv:1710.06574, 2017.

[Mnih et al., 2013] Volodymyr Mnih, Koray Kavukcuoglu,
David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep
reinforcement learning. arXiv preprint arXiv:1312.5602,
2013.

[Mnih et al., 2015] Volodymyr Mnih, Koray Kavukcuoglu,
David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidje-
land, Georg Ostrovski, et al. Human-level control through
deep reinforcement learning. Nature, 518(7540):529–533,
2015.

[Rummery and Niranjan, 1994] Gavin A Rummery and Ma-
hesan Niranjan. On-line Q-learning using connectionist
systems, volume 37. University of Cambridge, Department
of Engineering, 1994.

[Schaul et al., 2015] Tom Schaul, John Quan, Ioannis
Antonoglou, and David Silver. Prioritized experience re-
play. arXiv preprint arXiv:1511.05952, 2015.

[Schulman et al., 2015a] John Schulman, Sergey Levine,
Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust
region policy optimization. In Proceedings of the 32nd In-
ternational Conference on Machine Learning (ICML-15),
pages 1889–1897, 2015.

[Schulman et al., 2015b] John Schulman, Philipp Moritz,
Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advan-
tage estimation. arXiv preprint arXiv:1506.02438, 2015.

[Schulman et al., 2017] John Schulman, Filip Wolski, Pra-
fulla Dhariwal, Alec Radford, and Oleg Klimov. Prox-
imal policy optimization algorithms. arXiv preprint
arXiv:1707.06347, 2017.

[Sutton and Barto, 1998] R. S. Sutton and A. G. Barto. Re-
inforcement learning: An introduction. The MIT Press,
Cambridge, MA, 1998.

[Sutton et al., 2000] Richard S Sutton, David A McAllester,
Satinder P Singh, and Yishay Mansour. Policy gradient
methods for reinforcement learning with function approx-
imation. In Advances in Neural Information Processing
Systems, pages 1057–1063, 2000.

[Todorov et al., 2012] Emanuel Todorov, Tom Erez, and Yu-
val Tassa. Mujoco: A physics engine for model-based
control. In Intelligent Robots and Systems (IROS), 2012
IEEE/RSJ International Conference on, pages 5026–5033.
IEEE, 2012.

[Wang et al., 2016] Ziyu Wang, Victor Bapst, Nicolas Heess,
Volodymyr Mnih, Remi Munos, Koray Kavukcuoglu, and
Nando de Freitas. Sample efficient actor-critic with expe-
rience replay. arXiv preprint arXiv:1611.01224, 2016.

[Watkins and Dayan, 1992] Christopher JCH Watkins and
Peter Dayan. Q-learning. Machine Learning, 8(3):279–
292, 1992.

https://github.com/openai/baselines

	Introduction
	Background
	Reinforcement Learning Problems
	Policy Gradient Methods
	IS-based PG and PPO

	Related Work
	Experience Replay on Q-Learning
	Experience Replay on IS-based PG

	Multi-Batch Experience Replay
	Batch Structures of ACER and PPO
	The Proposed Multi-Batch Experience Replay Scheme

	Adaptive Batch Drop
	The Algorithm
	Experiments
	Environment Description and Parameter Setup
	Performance and Ablation Study of PPO-MBER
	Performance of PPO-AMBER
	Further Discussion

	Conclusion

