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Abstract

Deep reinforcement learning has obtained signifi-
cant breakthroughs in recent years. Most methods
in deep-RL achieve good results via the maximiza-
tion of the reward signal provided by the environ-
ment, typically in the form of discounted cumula-
tive returns. Such reward signals represent the im-
mediate feedback of a particular action performed
by an agent. However, tasks with sparse reward
signals are still challenging to on-policy methods.
In this paper, we introduce an effective characteri-
zation of past reward statistics (which can be seen
as long-term feedback signals) to supplement this
immediate reward feedback. In particular, value
functions are learned with multi-critics supervision,
enabling complex value functions to be more eas-
ily approximated in on-policy learning, even when
the reward signals are sparse. We also introduce
a novel exploration mechanism called “hot-wiring”
that can give a boost to seemingly trapped agents.
We demonstrate the effectiveness of our advantage
actor multi-critic (A2MC) method across the dis-
crete domains in Atari games as well as contin-
uous domains in the MuJoCo environments1. A
video demo is provided at https://youtu.
be/zBmpf3Yz8tc.

1 Introduction
Advances in deep learning have mobilized the research com-
munity to adopt deep reinforcement learning (RL) agents for
challenging control problems, typically in complex environ-
ments with raw sensory state-spaces. Breakthroughs by Mnih
et al. [2015] show RL-agents can reach above-human per-
formance in Atari 2600 games, and AlphaGo Zero Silver
et al. [2017] becomes the world champions on the game of
Go. Still, training RL agents is non-trivial. Off-policy meth-
ods typically require days of training to obtain competitive
performance, while on-policy methods could be trapped in
local minima. Recent techniques featuring on-policy learn-
ing Mnih et al. [2016]; Schulman et al. [2017]; Wu et al.

1Supplementary material: http://bit.ly/supp-id4

[2017] have shown promising results in stabilizing the learn-
ing processes, enabling an agent to solve a variety of tasks
in much less time. In particular, the state-of-the-art on-policy
ACKTR agent by Wu et al. [2017] shows improved sample
efficiency with the help of Kronecker-factored (K-Fac) ap-
proximate curvature for natural gradient updates, resulting in
stable and effective model updates towards a more promising
direction.

However, tasks with sparse rewards remain challenging to
on-policy methods. An agent could take massive amount
of exploration before reaching non-zero rewards; and as the
agent learns on-policy, the sparseness of reward feedback (re-
ceiving all-zero rewards from most actions performed by the
agent) could be malicious and render an agent to falsely pre-
dict all states in an environment towards a value of zero. As
there does not exist a universal criterion for measuring “task
sparseness”, we show an ad-hoc metric in Figure 1 in an at-
tempt to provide intuition. For example, we observe that the
ACKTR agent is unable to receive sufficient non-zero imme-
diate rewards that can provide instructive agent updates in
Atari games “Freeway” and “Enduro”, resulting in failures
when solving these two games. Moreover, if ACKTR gets
drawn to and trapped in unfavorable states (as in games like
Boxing and WizardOfWor), it could again take long hours of
exploration before the agent can get out of the local minima.
Such evidence shows that on-policy agent could indeed suffer
from the insufficiencies of guidance provided by the exclusive
immediate reward signals from the environment.

In this paper, we introduce an effective auxiliary reward
signal in tasks with sparse rewards to remedy the deficien-
cies of learning purely from standard immediate reward feed-
backs. As on-policy agents may take many explorations be-
fore reaching non-zero immediate rewards, we argue that we
can leverage past reward statistics to provide more instruc-
tive feedbacks to agents in the same environment. To this
end, we propose to characterize the past reward statistics in
order to gauge the “long-term” performance of an agent (de-
tailed in Section 4). After performing an action, an agent will
receive a long-term reward signal describing its past perfor-
mance upon this step, as well as the conventional immediate
reward from the environment. To effectively characterize the
long-term performance of the agent, we take into consider-
ations both the crude amount of rewards and the volatility
of rewards received in the past, where highly volatile distri-

https://youtu.be/zBmpf3Yz8tc
https://youtu.be/zBmpf3Yz8tc
http://bit.ly/supp-id4
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Figure 1: Performance of A2MC on Atari games trained with 15 million timesteps. Our method has a winning rate of 55.3% among all the
Atari games tested, as compared to the ACKTR. Our A2MC learns quickly in some of the hardest games for on-policy methods, such as
“Boxing”, “Enduro”, “Freeway”, “Robotank” and “WizardOfWor”. The sparseness of a game is defined as the sparseness of average rewards
x obtained by ACKTR within the first n = 106 timesteps by ϕ(x) =

(√
n− ‖x‖1

‖x‖2

)
/(
√
n − 1). A higher value of sparseness indicates

sparser rewards. A relative performance margin (in terms of final reward) larger than 10% is deemed as winning / losing. The shaded region
denotes the standard deviation over 2 random seeds.

butions of long-term rewards are explicitly penalized. This
enables complex value functions to be more easily approxi-
mated in multi-critics supervision. We find in practice that by
explicitly penalizing highly volatile long-term rewards while
maximizing the expectation of short-term rewards, the learn-
ing process and the overall performance are improved re-
garding both sample efficiency and final rewards. We fur-
ther propose a “hot-wiring” exploration mechanism that can
boost seemingly trapped agent in the earlier stage of learn-
ing. By leveraging the characterization of long/short-term
reward statistics, our proposed advantage actor multi-critic
model (A2MC) shows significantly improved performance on
the Atari 2600 games and the MuJoCo tasks as compared to
the state-of-the-art on-policy methods.

2 Related Work
Reward shaping and pseudo-rewards: To tackle the chal-
lenge in tasks with rarely observed rewards, pseudo-rewards
maximization is adopted in earlier works Konidaris and Barto
[2009]; Silver and Ciosek [2012]. Auxiliary vision tasks (e.g.,
learning pixel changes or network features) are adopted in
the off-policy UNREAL agent Jaderberg et al. [2016] in or-
der to facilitate learning better feature representations, par-
ticularly for sparse reward environments. Another direc-
tion of effort involves directly engineering a better reward
function or shaping the reward signal. Andrychowicz et al.
[2017] enhances off-policy learning by re-producing infor-
mative reward in hindsight for sequences of actions that do
not lead to success previously. The HRA approach Van Sei-
jen et al. [2017] exploits domain knowledge to define a set
of environment-specific rewards based on reward categories.
And the winning approach that learns playing “Doom” Lam-

ple and Chaplot [2017] shows promising success in the FPS
game that carefully crafting the task rewards would indeed be
beneficial. In contrast to heuristically defining vision-related
auxiliary tasks, our proposed A2MC agent learns from the
characterization of past reward statistics obtainable from any
environment; and different from the hybrid architecture per-
taining to Ms. Pacman only and the reward shaping settings
tailored specifically to ”Doom”, our proposed reward char-
acterization mechanism is generic and our A2MC general-
izes well to a variety of tasks without the need to engineer
a decomposition of problem-specific environment rewards.
Moreover, the capability of the proposed method to further
boost reward shaping is evidenced in our case study on play-
ing Doom (see Supplementary Section F).

Multi-agents: The multi-agent approaches Lanctot et al.
[2017] present another promising direction for learning. They
propose to train multiple agents in parallel when solving a
task, and to combine multiple action-value functions with a
centralized action-value function. The multi-critics supervi-
sion in our proposed A2MC model can be seen as a form
of joint-task or multi-task learning Teh et al. [2017] for both
long-term and short-term rewards.

On-policy v.s. Off-policy: Our empirical results based on
learning the characterization of long/short-term reward statis-
tics also echo the effectiveness of a recently proposed off-
policy reinforcement learning framework Bellemare et al.
[2017] that features a distributional variant of Q-learning,
wherein the value functions are learned to match the distribu-
tion of standard immediate returns. Also, Wang et al. [2016]
shows that applying experience replay to on-policy methods
can further enhance learning stability. Schulman et al. [2016]
proposes a variant of advantage function using eligibility



traces2 that provides both low-variance and low-bias gradi-
ent estimates. Thomas et al. Thomas et al. [2015] propose an
off-policy method for computing a lower confidence bound
on the expected return of a policy for the policy evaluation
problem, while our method is targeted explicitly for policy
learning (i.e., the policy control problem). These works are
orthogonal to our approach can potentially be combined with
the proposed characterization of past reward statistics to fur-
ther enhance learning performance. Using risk-sensitive ob-
jectives Chow et al. [2015]; Chow and Ghavamzadeh [2014];
Tamar et al. [2014] has shown success in terms of robustness
to modeling errors on customized setups. And while there
are indeed numerous works that try to address also the sparse
reward setting, we set out to base our arguments within the
on-policy RL domain and aim for a self-contained paper on
improving on-policy learning in general, wherein our method
reveals effectiveness for sparse reward games. Our extensive
experiments (see also Supplementary Section E and F) show
promising results of our approach in both on- and off-policy
frameworks, and we choose to focus on “on-policy” meth-
ods (i.e., those that do not involve off-policy trajectories or
experience replay) as in Wu et al. [2017] in the main text in
order to systematically evaluate the potential of our proposed
reward mechanism within the scope of this work.

3 Preliminary
Consider the standard reinforcement learning setting where
an agent interacts with an environment over a number of dis-
crete time step. At each time step t, the agent receives an en-
vironment state st, then executes an action at based on policy
πt. The environment produces reward rt and next state st+1,
according to which the agent gets feedback of its immedi-
ate action and will decide its next action at+1. The process
< S,A,R,S >, typically considered as a Markov Decision
Process, continues until a terminal state sT upon which the
environment resets itself and produces a new episode. Un-
der conventional settings, the return is calculated as the dis-
counted summation of rewards rt accumulated from time step
t onwards Rt =

∑∞
k=0 γ

krt+k. The goal of the agent is to
maximize the expected return from each state st while follow-
ing policy π. Each policy π has a corresponding action-value
function defined as Qπ(s, a) = E[Rt|st = s, at = a;π].
Similarly, each state s ∈ S under policy π has a value func-
tion defined as: V π(s) = E[Rt|st = s]. In value-based
approaches (e.g., Q-learning Mnih et al. [2015]), function
approximator Q(s, a; θ) can be used to approximate the op-
timal action value function Q∗(s, a). This is conventionally
learned by iteratively minimizing the below loss function:

L(θ) = E[(ytargett −Q(st, at; θ))
2], (1)

where ytargett = rt + γmaxa′ Q(st+1, a
′; θ) and st+1 is the

next state following state st.
In policy-based approaches (e.g., policy gradient meth-

ods), the optimal policy π∗(a|s) is approximated us-
ing the approximator π(a|s; θ). The policy approxima-
tor is then learned by gradient ascent on ∇θE[Rt] ≈

2See also Supplementary Section G for details regarding our
method and eligibility traces.

∇θ log π(at|st; θ)Rt. The REINFORCE method Williams
[1992] further incorporates a baseline b(st) to reduce the
variance of the gradient estimator: ∇θE[Rt]REINFORCE ≈
∇θ log π(at|st; θ)(Rt − b(st))

In actor-critic based approaches, the variance reduc-
tion further evolves into the advantage function A(st, at) =
Q(st, at) − V (st) in Mnih et al. [2016], where the action
value Qπ(st, at) is approximated by Rt and b(st) is replaced
by V π(st), deriving the advantage actor-critic architecture
where actor-head π(·|s) and the critic-head V (s) share low-
level features. The gradient update rule w.r.t. the action-
head is ∇θ log π(at|st; θ)(Rt − V (st; θ)). The gradient up-
date w.r.t. the critic-head is: ∇θ(Rt − V (st; θ))

2, where
Rt = rt + γV (st+1).

4 Characterization of Past Reward Statistics
The conventional reward rt received from the environment
at time step t after an action at is performed represents the
immediate reward regarding this particular action. This “im-
mediacy” could be interpreted as a short-term horizon of how
the agent is doing, i.e., evaluating the agent via judging its
actions by immediate rewards. We argue that the deficiencies
of learning solely from immediate rewards mainly come from
this limitation that the agent is learning from one single type
of exclusive short-term feedback.

As the goal of providing reward feedback to an agent is to
inform the agent of its performance, we seek to find an auxil-
iary performance metric that can measure whether the agent is
performing consistently well. Inspired by the formulation of
Sharpe Ratio (E[r] × 1

σr
) in evaluating the long-term perfor-

mance of porfolio strategies where the return E[r] is inversely
weighted by the risk σr, an effective characterization of his-
torical reward statistics should take into account at least two
factors, namely 1) how high the immediate reward is and 2)
how varied past rewards were, bringing the desired notion of
“risk-adjusted return” as in Sharpe [1994].

4.1 Variability-Weighted Reward
To this end, we follow insights behind Dowd; Sharpe [1994]
and define a variability-weighted characterization of past re-
wards. This is illustrated in Figure 2. We consider a histor-
ical sequence of T rewards upon timestep t (looking back-
ward T − 1 timesteps): ~r = [rt−(T−1)..., rt−2, rt−1, rt]. In
order to evaluate how high and varied the reward sequence
is, a few steps of pre-processing G is applied, denoted as
~R = G(~r). Specifically, we first derive the reward change
at each timestep (similar to the “differential return” concept
in Sharpe [1994]) with dn = rn − rn−1:
~d = [dt−(T−1), dt−(T−2), . . . , dt]

= [rt−(T−1), rt−(T−2) − rt−(T−1), . . . , rt − rt−1].
(2)

Then we re-order the sequence by flipping 3 with fn =
dt+1−n:

~f = [f1, f2, . . . , fT ] = [dt, dt−1, . . . , dt−(T−1)]. (3)

3By flipping, we further encourage “recent” stable rewards and
penalize the volatility of recent past rewards. A concrete example is
given in the Supplementary Section A.
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Figure 2: Illustration of the proposed variability-weighted reward (VWR). The first row shows the raw reward sequence (blue) while the
second row presents the post-processed sequence ~R (green) and the zero-variability reference ~Rzero (orange), and RH is calculated as a
reflection of how high the immediate reward is. The third row shows the volatility statistics of δR, representing how varied past rewards
were. We curated 3 hypothetical reward sequences – (a) highly varied sequence with low immediate reward, resulting in the lowest VWR;
(b) highly varied sequence with high immediate reward, leading to a relatively high VWR; (c) stable sequence with high immediate reward,
achieving the best VWR. More examples can be found in the Supplementary Section A.

Next we append f0 = 1 to the head of sequence ~f and take
the normalized cumulative sum to obtain the post-processed
reward sequence as ~R = [R0,R1, . . . ,RT ] = 1

T+1 [f0, f0 +

f1, . . . ,
∑T
i=0 fi]. Under such processing, numerical instabil-

ity (see Eq. 4) when all rewards in the sequence are zero can
be alleviated, while the averaging term 1

T+1 mitigates the ef-
fect of introducing the artificial f0. Optionally, smoothing
techniques such as exponential moving average may be ap-
plied as well.

The resulting ~R is a reward sequence with RT − R0 =
1

T+1rt, andRn−Rn−1 = 1
T+1 (rt+1−n− rt−n). Therefore,

the difference between RT and R0 represents the immedi-
ate reward and the whole sequence ~R reflects the volatility
of past rewards. In Figure 2, three examples of processed se-
quence are presented in the second row with the correspond-
ing raw rewards shown in the first row. We account for how
high the immediate reward is by defining the relative percent-
age log total return as:

RH =
RT 1/T −R0

1/T

R0
1/T

(4)

To account for how varied past rewards were, we first
define a smooth zero-variability reference as: ~Rzero =

[Rzero0 ,Rzero1 , . . . ,RzeroT ] = R0[e
0×R̃, e1×R̃, . . . , eT R̃]

with R̃ = 1
T ln RT

R0
, representing a smooth monotonic ref-

erence sequence from R0 to RT . Then we define the re-
ward differential δR as the differential reward versus its zero-
variability reference as δR(n) =

Rn−Rzero
n

Rzero
n

, whose statistics
are sketched in the third row of Figure 2. With maximally
allowed volatility as σmax, the variability weights can be de-
fined as: ω = 1− [σ(δR)

σmax
]τ , where σ(·) is the standard devia-

tion and τ controls the rate to penalize highly volatile reward
distribution. Finally we can derive the variability-weighted
past reward indicator rvwr for the characterization of past
reward statistics:

rvwr =

{
RH(1− [σ(δR)

σmax
]τ ) if σ(δR) < σmax,RT > 0

0 otherwise
(5)

The formulation of Equation 5 share principled themes as
in Sharpe [1994] and Dowd:

1. Dowd compares the newly obtained SRnew with the
previous SRold in choosing new assets; we derive RH
in Eq. 4 by comparing the latest reward RT with R0

to explicitly encourage the agent to aim for reward im-
provements in “choosing new actions”;

2. Both the Sharpe Ratio (SR) and Eq. 5 involve “vari-
ability weights” to adjust for the unit risk of return
E[R] Sharpe [1994] (i.e., 1

σr
for SR and 1 − [σ(δR)

σmax
]τ

for rvwr);
3. Whereas Dowd introduces the concept of “minimum re-

quired return” based on the elasticity of value at risk
(VaR), we consider the maximum tolerance level σmax
with elasticity controlled by τ for improved learning sta-
bility of rvwr(see also Supplementary Section H).

Example computed values of rvwr for the characterization
of different reward statistics are shown in Figure 2 and we
show strong empirical results (in Section 6) to confirm the
validity and robustness of the proposed formulation in multi-
ple reinforcement learning domains.

4.2 Multi-Critic Architecture
A higher value of rvwr indicates better agent performance
as the result of the historical sequence of actions. The same



set of optimization procedures for conventional value func-
tion (i.e., via maximization of immediate reward signal r) up-
date can be applied accordingly. The actual returns computed
from both the “long-term” and “short-term” rewards are dis-
counted by the same factor γ. In particular, for standard N -
step look-ahead approaches, we have:

Rshort-term
t =

N−1∑
n=0

γnrt+n + γNV (st+N ),

Rlong-term
t =

N−1∑
n=0

γnrvwrt+n + γNV vwr(st+N )

(6)

Similar to the standard state value function V (s), we fur-
ther define V vwr(s) as the value function w.r.t the variability-
weighted reward rvwr. These value functions form multiple
critics judging a given state s. The gradients w.r.t. the critics
then become:

∇critic = ∇θshort-term [(Rshort-term
t − V (st; θ

short-term))2]+

∇θlong-term [(Rlong-term
t − V vwr(st; θlong-term))2]

(7)

where the standard grading clipping approach can be applied
in Eq. 7 for enhanced stability. More advanced methods for
estimating Rshort-term

t and Rlong-term
t above, such as the online

variant of generalized advantage estimation (GAE) using eli-
gibility traces Schulman et al. [2016] can be adopted in place
of Eq. 6, as shown below (see also Supplementary Section G):

Ashort-term
t =

∞∑
n=0

(γλ)nδt+n and Along-term
t =

∞∑
n=0

(γλ)nδvwrt+n

δt = rt + γV (st+1)− V (st)

δvwrt = rvwrt + γV vwr(st+1)− V vwr(st)
(8)

where the generalized estimator of the advantage function
Ashort-term
t and Along-term

t allows a trade-off of bias v.s. vari-
ance using the parameter 0 ≤ λ ≤ 1, similar to the TD(λ)
approach for eligibility traces. We show the effectiveness
of the proposed characterization of past reward statistics in
multiple advantage actor-critic frameworks (i.e., ACKTR and
PPO), where the two different value functions can share
the same low-level feature representation, enabling a sin-
gle agent to learn multiple critics parameterized by θj , j ∈
{short-term, long-term}. The gradient to the actor branch is
from both of the critics by accumulating the gradients follow-
ing standard multi-task learning approaches. (See also Sup-
plementary Section I for the full algorithm).

5 Hot-Wire ε-Exploration
Being handed a game-stick, a human most likely would try
out all the available buttons on it to see which particular but-
ton entails whatever actions on the game screen, hence receiv-
ing useful feedbacks. Inspired by this, we propose to hot-wire
the agent to perform an identical sequence of randomly cho-
sen actions in the N-step look-ahead during the initial stage

Figure 3: Performance of A2MC on Atari games. “Hot-Wiring”
exploration makes the agent easier to figure out how to play chal-
lenging games like “Robotank” and “WizardOfWor”, and for most
games, it provides a better initial state for the agent to start off at
a game and hence to obtain better final results. The number in fig-
ure legend shows the average reward among the last 100 episodes
and the percentage shows the performance margin as compared to
ACKTR. The shaded region denotes the standard deviation over 2
random seeds. (Best viewed with zoom-in.)

(randomly pressing down a game-stick button for a while):

at+k =

{
a random action identical for all k prob = ε
π(at+k|st+k) for k = 0, ..., N − 1 prob = 1− ε

(9)
We show that by enabling the “hot-wiring” mechanism4, a
seemingly trapped agent can be boosted to learn to quickly
solve problems where rewards can only be triggered by par-
ticular action sequences, as shown in games like “Robotank”
and “WizardOfWor” in Figure 3.

6 Experiments
We use the same network architecture and natural gradi-
ent optimization method as in the ACKTR model Wu et al.
[2017]. We set σmax = 1.0, τ = 2.0 and T = 20 in the
computation of variability-weighted reward (see Supplemen-
tary Section C for hyperparameter studies). For hot-wiring
exploration, we choose ε = 0.20 and initial stage to be first
1
40 of the total training period for all experiments. Other hy-
perparameters such as learning rate and gradient clipping re-
main the same as in the ACKTR model Wu et al. [2017],
in addition to adopting GAE Schulman et al. [2016] for a
stronger ACKTR baseline (see Sec 4.2). We first present re-
sults of evaluating the proposed A2MC model in two standard
benchmarks, the discrete Atari experiments and the continu-
ous MuJoCo domain. Then we show ablation studies on the
robustness of the hyper-parameters involved as well as evalu-
ating the extensibility of the proposed long/short-term reward
characterizations to other on-policy methods. Further exten-
sions to off-policy domains are presented in Supplementary
Section E and Supplementary Section F.

We further expand the training budget and continue learn-
ing the games until 50 million timesteps as in Wu et al.
[2017]. As shown in Table 1, our A2MC model can solve

4hot-wire is triggered only when the agent is unable to receive
meaningful rewards in an initial learning stage. The legend “vwr +
hotWire” in Fig. 3 indicates that the mechanism is “enabled” but not
“enforced”.



Table 1: Comparison of average episode rewards at the end of 50
million timesteps in Atari experiments. The reward scores and the
first episodes reaching human-level performance Mnih et al. [2015]
are reported as in Wu et al. [2017]. A2MC is able to solve games that
are challenging to ACKTR and also retain comparable performance
in the rest of games.

ACKTR A2MC

Domain Human Rewards Eps Rewards Eps

Asteroids 47388.7 34171.0 N/A 830232.5 11314
Beamrider 5775.0 13581.4 3279 13564.3 3012
Boxing 12.1 1.5 N/A 99.1 158
Breakout 31.8 735.7 4097 411.4 3664
Double Dunk -16.4 -0.5 742 21.3 544
Enduro 860.5 0.0 N/A 3492.2 730
Freeway 29.6 0.0 N/A 32.7 1058
Pong 9.3 20.9 904 19.4 804
Q-bert 13455.0 21500.3 6422 25229.0 7259
Robotank 11.9 16.5 - 25.7 4158
Seaquest 20182.0 1776.0 N/A 1798.6 N/A
Space Invaders 1652.0 19723.0 14696 11774.0 11064
Wizard of Wor 4756.5 702 N/A 7471.0 8119

games like “Boxing”, “Freeway” and “Enduro” that are chal-
lenging for the baseline ACKTR model. For a full picture of
model performance in Atari games, A2MC has a human-level
performance rate of 74.5% (38 out of 51 games) in the Atari
benchmarks, compared to 63.6% reached by ACKTR. Indi-
vidual game scores for all the Atari games are reported in the
Supplementary Section B.

6.1 ATARI 2600 Games
We follow standard evaluation protocol to evaluate A2MC in
a variety of Atari game environments (starting with 30 no-
op actions). We train our models for 15 million timesteps for
each game environment and score each game based on the av-
erage episode rewards obtained among the last 100 episodes
as in Wu et al. [2017]. The learning results on 12 Atari games
are shown in Figure 3 where we also included an ablation ex-
periment of A2MC without hot-wiring. We observe that on
average A2MC improves upon ACKTR in terms of final per-
formance under the same training budget. Our A2MC is able
to consistently improve agent performance based on the pro-
posed characterization of reward statistics, hence the agent is
able to get out of local minima in less time (higher sample ef-
ficiency) compared to ACKTR. The complete learning results
on all games are attached in the Supplementary Section B.

6.2 Continuous Control
For the evaluations on continuous control tasks simulated in
MuJoCo environment, we first follow Wu et al. [2017] and
tune a different set of hyper-parameters from Atari experi-
ments. Specifically, all MuJoCo experiments are trained with
a larger batch size of 2500. The results of eight MuJoCo
environments trained for 1 million timesteps are shown in
Figure 4. We observe that A2MC also performs well in all
MuJoCo continuous control tasks. In particular, A2MC has
brought significant improvement on the tasks of HalfCheetah,
Swimmer and Walker2d (see Table 2).

Figure 4: Performance on the MuJoCo benchmark. A2MC is
also competitive on MuJoCo continuous domain when compared to
ACKTR. The shaded region denotes std over 3 random seeds. (Best
viewed with zoom-in.)

To test the robustness of A2MC, we perform another set
of evaluations on MuJoCo tasks by keeping an identical set
of hyper-parameters used in the Atari experiments. Figure 7
in Supplementary Section C shows this ablation result. We
observe that even under sub-optimal hyper-parameters, our
A2MC model can still learn to solve the MuJoCo control
tasks in the long run. Moreover, it is less prone to overfit-
ting when compared to ACKTR under such “stress testing”.
Additional hyper-parameter studies can be found in Supple-
mentary Section C.

We also evaluate a multi-critics variant of the proximal
policy optimization (PPO) model on the MuJoCo tasks with
our proposed long/short-term rewards. In particular, we ob-
serve that our proposed variability-weighted reward general-
izes well with the vanilla PPO, and our multi-critics PPO vari-
ant (MC-PPO) shows more favorable performance, as shown
in Table 2. Specifically, MC-PPO shows the best performance
on Hopper and Walker-2d among all models under the 1-
million timesteps training budget. Both of our multi-critics
variants (A2MC and MC-PPO) have won 6 out of the 8 Mu-
JoCo tasks with relative performance margins (percentages in
parentheses) larger than 25% (see Table 2).

7 Conclusion
In this work, we introduce an effective auxiliary reward signal
to remedy the deficiencies of learning solely from the stan-
dard environment rewards. Our proposed characterization of
past reward statistics results in improved learning and higher
sample efficiencies for on-policy methods, especially in chal-
lenging tasks with sparse rewards. Experiments on both dis-
crete tasks in Atari environment and MuJoCo continuous con-
trol tasks validate the effectiveness of utilizing the proposed
long/short-term reward statistics for on-policy methods us-
ing multi-critic architectures. This suggests that expanding
the form of reward feedbacks in reinforcement learning is a
promising research direction.
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