Multi-Model based Actor-Critic

Haoran Wei
Department of Computer and
Information Sciences
University of Delaware
nancywhr@udel.edu

Abstract

Reinforcement Learning (RL) is useful for solv-
ing complex sequential decision-making problems,
but the convergence typically requires a very large
number of environment interactions. The learning
efficiency problem is worsened in model-free RL
methods. When a high-fidelity simulation is avail-
able, speeding up single agent learning by paral-
lel cooperative agents is a promising solution, such
as the synchronous Actor-Critic method. When
the environment model is not known, a predictive
model can be trained as an environment simula-
tor. However, the model mismatch may cause the
RL policy trained from such a model to be highly
biased. In this paper, we use a multi-model sys-
tem to simulate an unknown environment and gen-
erate synthetic data for a master RL agent. This
work contributes to domains where no high-quality
environment simulator is available and the real-
environment interactions are costly (e.g., finance
problems). To overcome model mismatch, we en-
semble multiple environment models to blend bi-
ased synthetic data. We experimentally compare
our proposed method with the vanilla Actor-Critic
where the environment model is available. Results
show that our proposed method reaches the asymp-
totic learning bound with fewer true, non-simulated
environmental interactions.

1 Introduction

Reinforcement Learning (RL) is a very natural way to solve
a sequential decision-making task, unfortunately, it suffers
from dealing with large scale real-world tasks with a large
number of states. Many works have focussed on scaling
up RL, such as balancing exploration and exploitation[Mann
and Choe, 2011] or parallelization with a decomposed state
space[Wei et al., 2018]. In recent years, combining neural
networks with RL (DRL) has received many breakthroughs
in many challenging domains such as game playing [Mnih et
al., 2015] and robotic control [Levine et al., 2016]. Based
on ideas from both Dyna-Q and Advantage Actor-Critic ap-
proaches, we explore an approach to use multi-model paral-
lel off-line learning, backing an on-line model-free learner,

Keith Decker
Department of Computer and
Information Sciences

University of Delaware
decker@udel.edu

to improve the online RL agent’s learning efficiency in this
study.

One widely-used DRL category is model-free RL (MF-
RL) that learns a policy from data samples in a trial-and-
error fashion without building an explicit environment model.
The biggest obstacle to scaling up such an approach is its
low sampling efficiency, especially in large-scale domains.
Parallel agents can be used to improve data-sampling effi-
ciency by simultaneously exploring in an environment sim-
ulator and aggregating their learning results via a central-
ized controller (e.g., Asynchronous Actor-Critic). Another
solution is model-based RL (MB-RL) where the environment
model is built iteratively and the policy is obtained through
planning based on the environment model (e.g., Monte Carlo
Tree Search) [Guo et al., 2014]. The model-based methods
increase sampling efficiency significantly with the help of the
environment model, but an imperfect model that doesn’t ac-
curately match the real world can mislead the RL policy and
import biases.

In this study, we introduce an idea to combine model-free
and model-based methods where an online RL agent learns
the policy with a model-free approach and multiple models
are built as background simulators to provide synthetic data
backing to the online RL agent. We call the online RL agent
the “master learner” and the multiple environment models as
“assistant models” or “assistant system.” There could be more
than one master learner, and we explore this in the experi-
ment part. The master learner uses Actor-Critic as its learning
method due to its advantage in reducing the policy variance
by combining policy-based and value-based methods, and it’s
ability to surpass the state of the art on the Atari domain.
This work also can be combined with Asynchronous Actor-
Critic (A3C)[Mnih et al., 2016] framework where all agents
are master learners and they update the with assistant sys-
tem’s synthetic data. Assistant models predict the next state
from the given current state and action and they build from
scratch with randomly sampled data from the environment.
Assistant models also keep iteratively updating every N steps
with the master learner’s sampled data to be close to the real
environment. An ensemble method is used to aggregate the
synthetic data generated from all assistant models to reduce
the bias caused by imperfect model prediction. We use the
asynchronous advantage actor-critic algorithm [Mnih er al.,
2016] as the baseline where the environment is assumed to

be known, and all agents learn with their environment copies.
Due to limited resources, we implement the proposed method
on the OpenAl Gym Cart-Pole and Lunar-Lander domains.
Even though the OpenAl gym environments themselves are
simulators, we want to show the potential of scaling up the RL
in real physical environments where the interactions are ex-
pensive, and the number of learning agents are limited. Over-
all, our contributions include 1) a new approach to combine
a multi-model system with a model-free on-line RL agent; 2)
a method to increase RL efficiency and shed some light on
scaling up RL in an unknown environment.

2 Related Work

ME-RL learns a policy from domain rewards and bootstrap-
ping the future estimated utility. As well known, MF-RL
eventually outperforms in finding an optimal policy. How-
ever, MF approaches usually require a large number of sam-
ple data (e.g., Deep Q-Networks (DQN) [Mnih et al., 2015])
so that they are impractical in large scale environments,
sparse reward scenarios, or when environmental interactions
are expensive. On the other hand, Model-based(MB) ap-
proaches can use samples efficiently because they model the
environment explicitly so that more explorations can be car-
ried out through the model and agents have longer on ac-
tion selections [Guo et al., 2014; Deisenroth et al., 2015;
2011]. Recent studies have explored more possibilities to-
wards general applications with model-based RL algorithms
[Depeweg et al., 2016; Mishra et al., 2017]. However, in-
sufficient training data limits most works due to the model
training on a fixed dataset beforehand. Besides, a biased en-
vironment model might then cause a strongly biased policy.
State of the art approaches that integrate MF and MB RL
[Weber et al., 2017; Peng et al., 2018; Bansal et al., 2017,
Pong et al., 2018] provide a promising way to improve RL
learning efficiency by leveraging each side’s advantages and
overcoming the challenges of each approach.

The work of Dyna-Q [Sutton, 1990] inspires our work, a
classic method combining model-free learning and model-
based planning where each Q-learning step in the real en-
vironment is followed by N steps planning on the simulated
model to expand the policy update data samples. Lately, Deep
Dyna-Q [Peng et al., 2018] has been developed to scale-up
Dyna-Q’s application domains with neural networks and also
addressed the benefit of having a simulation model. Using
Dyna-Q methods to accelerate model-free RL is clearly ben-
eficial when the learned simulation model perfectly matches
the domain ground truth. However, an imperfect simula-
tion model may degrade the policy’s stability and optimal-
ity rapidly [Gu er al., 2016]. Instead of learning the domain
model with a fixed sampling dataset, in our study the mod-
els are continually updated with new real environment sam-
ple data. Similar multi-model learning can be seen in more
general Al studies including natural language processing and
image processing [Baltrusaitis et al., 2019].

Our work is also similar to work [Foerster et al., 2017;
Kurutach et al., 2018] where ensemble methods are used to
blend the prediction biases from imperfectly trained environ-
ment models. Differently, our study merges the ensembled

multi-model learning with MF-RL. The master MF-RL agent
suggests the assistant models’ exploration and also aggre-
gates the exploring trajectories. Another related work [Lowe
et al., 2017] proposes a decentralized version of multiagent
Actor-Critic (AC) for continuous tasks. For the same reason,
we believe actor-critic has better learning stability compared
to value-based methods (e.g., Q-learning) because it asso-
ciates the policy update with one-step state utility value. We
also implement Actor-Critic for the master learner.

3 Preliminaries

This paper sets the environment as a discrete-time, finite-
horizon Markov Decision Process (MDP). An MDP can be
defined as (S, A, r, pg, P), where S € R" is the state space,
n is the dimension of each state. .4 is the discrete action
space. r is the reward function: S x A xS — r € R.
po 1s the initial state distribution. P is the transition model,
mapping state-action pairs to a probability distribution across
next states: P(s’|s,a) — [0, 1]. We denote a stochastic pol-
icy mg(als) as the probability of taking action a in state s,
where 6 is the policy’s parameter. The total discounted re-
ward following a policy 7 within a certain time horizon is
n™(0) = E[ZtT;Ol yir(sy, ar)], where 7 is the discount factor
and T is the time horizon. E[- - -] indicates the empirical ex-
pectation of rewards within a certain time horizon over a finite
batch of samples. Our goal is to find the optimal policy 7* by
maximizing the total reward n™. In this study, we assume
the S, A and reward function are known, and the transition
function P is unknown.

Our work targets domains where there is no high-fidelity
simulator is available and the reward function is assumed to
be known in this work. Each assistant model is a predic-
tion model, f(s,a), that predicts the next state based on a
given previous state and action, built with supervised learn-
ing. Shuffled random trajectory samples are used to differen-
tiate the multiple assistant models. The master learner uses
Actor-Critic as the learning method which updates the RL
policy directly via the policy network. In this section, we
provide a brief overview of the model-learning method and
Actor-Critic methods.

3.1 Model Learning

In small-scale environments with discrete state and action
spaces, the transition model can be learned with the occur-
rences of transitions [Hwang et al., 2015]:

C(s,a,s)

C(s,a) M

f(s']s,a) =

where C(s,a, ') is the count of transition (s, a, s’). The se-
vere drawback is that it relies on a large number of transi-
tion samples from the real environment and requires large
space to memorize directly. Instead, the transition model
can be represented by a feed-forward neural network. The
model predicts either the probability of change to a state
or predicts the next state directly [Kurutach er al, 2018;
Nagabandi et al., 2018]. The environment model is optimized
by minimizing the average absolute squared error of (¢(¢)),

shown as:

£(¢) = @

where D is the training dataset of state-action-state transitions
from the real environment. Optionally, the prediction loss
also can include the loss of reward prediction and the terminal
state prediction.

With MB-RL, when the environment model is available, a
sequence of actions can be planned based on the model. The
simplest but very popular method is called “random shoot-
ing” in which a randomly sampled action is taken at each step
following a certain distribution, such as uniform distribution.
More advanced methods include Monte Carlo Tree Search
(MCTS) [Chaslot et al., 20081, which selects an action that
hasn’t been visited yet or results in the maximal estimated
value at each time step. The environment model also can be
updated iteratively with new sample data to move closer to
the real environment. The vanilla MB-Learning algorithm is
summarized in Algorithm 1.

1
> Gl fsal® @

(s,a,s")ED

Algorithm 1 vanilla Model-Based (MB) Learning
Require:
Initialize predictive models f with random weights
Initialize a base policy 7
Initialize an empty sampling dataset D
repeat
collect random sample set D with 7
update model f(s, a) with Eq 2
for step in N_STEPS do
plan through f(s, a) to get actions
execute the first action, observe transition (s, a,)
add (s,a,s’)to D
end for
until the performance stops improving

3.2 Actor-Critic

Policy gradient (PG) is a category of model-free method, and
it parameterizes the policy as a function represented by a neu-
ral network. The goal is to maximize the discounted total
reward, " (0) = Ztho ~try, by doing gradient ascent on
the policy parameters, represented as Vg™ (0). Compared to
value-based methods (e.g., Q-learning), PG updates the pol-
icy directly and avoids some drawbacks of value-based meth-
ods, such as value over-estimation, etc. One well-known PG
method is REINFORCE [Williams, 1992] that uses the tra-
jectory total reward R in the policy update objective function:
n™ = E[logm(7) R}, where T is a trajectory following the cur-
. T—1 .

rent policy and 7(7) = po(so) [[,_; p(st41lse,ar). E(-) is
the mean operation based on a mini batch of trajectories. With
a good overall reward, all actions along the trajectory are as-
sumed to be good, so that it ignores the adverse actions and
results in higher variance.

Actor-Critic (AC) [Mnih et al., 2016] has an additional
value network besides the policy network compared to the
vanilla PG methods, and the value network can help reduce

the policy variance. The value network is called the “critic,”
and we use w to represent its parameters. The critic approx-
imates the Q value for each input state and action pair. The
policy network is called the “actor,” and is parameterized by
6. In this work, we implement these two networks with shared
fully connected layers but separated output layers. The ac-
tor updates by maximizing the expected total rewards over a
batch of trajectories:

7™ (0) = Ellogr (s, a;0)Q(s, a;w)] 3)

Meanwhile, the critic network optimizes with supervised
learning, minimizing the mean square error on the Q-value

prediction:
e =E[(y — Qs,a;0))’])

where y is the target value, and it estimates the Q-value for
current state and action with the immediate reward as well as
bootstrapping the best estimated Q-value from next states:

_ o7,
y=r+maxQ(s’,a’w))

Compared to the regular PG methods, where using the tra-
jectory reward R may ignore some adverse actions once the
overall summation of reward is high, the critic measures the
policy performance at every single step with Q-value so that
the probability of taking a bad-performing action is reduced
and policy variance is lowered. To reduce the variance even
more, an advantage value (A(s,a)) is introduced that is the
difference between the Q-value of a state-action pair and the
utility of the same state (V (s)), representing how much bet-
ter an action can do in a given state compared to the average
performance of all actions. We use the mean value of Q(s, a)
over all actions to represent the V'(s). We use the advantage
value to update the actor-network in this study, indicated as:

7™ (0) = Ellogr (s, a; 6) A(s, a; w)] (6)

The AC method also can be executed in a set of parallel
environments (e.g. Asynchronous Actor-Critic (A3C)) with
their environment copies. Agents explore asynchronously,
and they are very likely to explore different parts of the envi-
ronment each time. A3C improves performance by increas-
ing the diversity of training data, and no experience replay
is needed. Notably, a good environment simulation model is
required to make copies for multiple RL agents in this setting.

4 Multiagent Model-based Actor-Critic
(MMAC)

We propose a framework, Multi-Model based Actor-Critic
(MMACQ), to increase RL agent learning efficiency and scale
up RL application to domains where no high-fidelity simula-
tor is available. This framework comprises two parts: master
learner(s) and assistant models. The master leaner is an on-
line RL agent as well as a centralized aggregator for assistant
models. The assistant models learn the environment model
in parallel and explore with master learner’s exploration sug-
gestion. Each assistant model predicts the next state based on
the input state and action and updates with real environment
data samples provided by the master learner. With a predicted
state, a “done” status is decided with some prior knowledge of

Algorithm 2 Multiagent Model-based Actor-Critic (MMAC)

Require:
A base(random) exploration policy g
Initialize the master learner with random weight 6

Initialize M assistant models { fz}
Initialize a dataset DP
for epoch in NUM_EPOCH do
collect random sample with 7 and add to DP
fori=1,--- , M do
random sample a mini batch B from DP
update model f; with B as Eq 2
end for
if epoch < H then
for for i in M do
generate trajectories 7° from model f;
end for
update 7 and value function Q(s, a) as Eq 7
end if
sample trajectories from environment and add to DP
update 7 and value function Q(s, a) as Eq 3, 4
end for

_, withrandom weights

the environment (done status represents if a task has been fin-
ished or if the agent has failed. If done is True, an initial state
is selected to start over at next time step). Take the OpenAl
cartpole task as an example, if the predicted angle between
the pole and the cart is within a small degree threshold, the
pole has fallen so that the task has been done, here the degree
threshold is the prior knowledge, and the angle between the
pole and the cart is part of the prediction. An assistant model
generates synthetic trajectories by iteratively selecting an ac-
tion and predict the next state. The action selection follows
the master learner’s current policy with a certain probabil-
ity, otherwise, randomly select one. The synthetic data are
backed to update the master learner. This is a win-win work
cycle between the master agent and the assistant models, and
we depict it in the Fig 3. The entire working flow is demon-
strated in Figure 1. The way that the assistant model system
works is very similar to the state of art work[Kurutach et al.,
2018]. We use an ensemble method to balance the imperfect
M assistant models’ biases, by averaging their sample trajec-
tories cumulative rewards, Eq 7. The ensemble method serves
as an effective regularization for policy learning stability.

1
"= 7 2 Enllogm(s,a)Q(s, a)] (7)
1€EM

The proposed algorithm is summarized as Alg 2. The mas-
ter learner(s) explores independently from the multi-model
system and update with both aggregated data from assistant
models and real environment sampled data. The M assis-
tant models { fi(s7a)}£\il start learning with random sam-
ples drew from the dataset DP where all data are collected
with the random exploration policy my. Assistant models dif-
ferentiate with randomly sampled training data and update
with minimizing the difference between the model’s predic-
tion and the ground truth, shown as Eq 2. The assistants’
synthetic trajectories that are used for master learner’s up-
dates are sampled with the master learner’s current policy:

Assistant Multi-Model System Master Leaner
Assistant Assistant Assistant update) ¢
> (Modelj [Modelj [Modelj @
update
-\ T 7 T
\ ! II . '
\ I ’ ! !
§. ', generating : interact | 2
53 ‘\synlhetic data / ! ! 3
5] / 1 aQ
\ ! ’ 1 . 5
\ 1 ’ 1 1
/ —
’ s } d with led dat: /v \\
s~ - _ei‘p_a”_ lm_ _sa_mPe_ - ala_ - l Real Environment ?—
DP A _
Figure 1: Multi-model Actor-Critic (MMAC) framework.

Master agent interacts with the real environment and updates
with both real environment data and assistant model’s syn-
thetic data. Assistant models are initialized with random sam-
ples and are optimized with the master learner’s trajectory
data.

Figure 2: Control Tasks. Left:LunarLander-v2 task. Right:
CartPole-v1 task

sk« fi(sk—1,7m(ag—1|sg—1) for k = 1,--- | T, where i is
the index of assistant model and 7 (-) is the master learner’s
policy. The initial states for all assistant models are randomly
picked in each training epoch. In this study, we use neural
networks as the assistant models. Alternatively, linear Gaus-
sian regression and Gaussian Process(GP) are also commonly
used, and we’ll compare them in future work. Besides, we
also set a threshold H as the trigger to start using the assistant
model for backing the synthetic data to the master learner.
The assistant models are suspended in the beginning because
we observe a negative influence from the severely imperfect
trained assistant models and the insufficient random environ-
ment samples may cause it. This threshold also can be set
according to the assistant model prediction errors, and we’ll
discuss this setting in our future work. Notice that the predic-
tion models converge much faster than the policy and value
networks, policy tends to exploit certain area repeatedly even-
tually, which is an overfitting issue. We use early stopping
and value clipping to alleviate this issue.

To summary, our proposed framework uses decentralized
model-learning execution to accelerate a centralized learn-
ing process and this idea has been used to speed up RL in
other works [Clemente et al., 2017; Wei et al., 2018]. The
benefit can be concluded as 1) parallelization is an efficient
approach to scale up the RL with more varied information
bootstrapped. 2) Model-learning broader the RL application
domains to where the environment is not fully known.

provide synthetic

< data for updates

update assistant

models with real
sampling data

Master
Leaner

Assistant
System

Figure 3: A Win-win interactive cycle: assistant system pro-
vides more update data to the master learner, and the master
learner reciprocates real data for assistant models to update
as well.

5 Experiment

A3C[Mnih er al., 2016] algorithm is the baseline in our ex-
periment (“baseline” and “A3C” are interchangeable in the
following article) which has a similar parallel structure as our
proposed work. In contrast, A3C works with a high-fidelity
discrete time environment simulator and all parallel agents
learn with their own environment copies. We expect that
with the same total number of agents, the MMAC can pro-
vide asymptotic or even better solution compared to the A3C
without an explicit environment model.

5.1 Experiment Tasks and Setup

We implement A3C and MMAC on two OpenAl Gym con-
trol tasks: Cart Pole and Lunar Lander, shown in Fig 2. With
A3C, each agent has an OpenAl task model copy. In contrast,
MMAC only observes the state and action without calling the
transition model so that the environment remains uncertain.
In both tasks, the state and the action space are well defined.
After each step, there is reward feedback from the environ-
ment. The performance metric is the average of cumulative
rewards along trajectories from the initial states until the task
terminal states.

We have a grid search with single agent’s AC on the
hyper-parameters for AC network and the master learner(s)
in MMAC and all agents in A3C share the same network set-
ting: three linear connected layers with 64 neuron units each
layer (128 for Lunar-Lander). A Relu layer is used at the end
of each Linear layer. The policy output layer (Linear Layer)
provides probability distribution of the whole action space,
and the critic output layer provides the value for the input
state and action. The assistant models are also three-layer
neural networks (64 neurons each layer) and one extra output
layer for the state prediction.

The assistant models update with supervised learning as Eq
2. The master learner updates by minimizing a weighted com-
bination of three objective functions (shown as Eq 8): value
prediction loss (L,), action gain (L,), and a policy cross-
entropy (L¢). A1,A\2 and A3 are the linear weights.

L=)\1L1J - >\2La + >\3L€
where
_ roon 2
L, = E-[(r + maxQu(s’,a') — Qu(s,a))] (8)

Lo = E-[logmg(als)Qu(s, a)]
L.=E; [lOg 7r9(a|3)7r9(a|5)]

—— MMAC_2
MMAC_4
— baseline

Testing Accumulative Score

5 10 15 20 2 30 35 40 a5

5
Training Epochs (x20)

a. CartPole-v1 Task

1000 —— MMAC_2
MMAC_4
~— baseline

-500
—1000

-1500

Testing Accumulative Score

5 10 15

20 25 30
Training Epochs (x20)

35 40 a5

b. LunarLander-v2 Task

Figure 4: An assistant model system improves the learning
speed.

Where L, is the critic value optimization objective func-
tion in Eq 3. L, is the actor-network’s loss function. L. is the
policy cross-entropy encourages the exploration. 7 represents
trajectories either from the real environment or generated by
an assistant model. 6 and w are the actor and critic network
parameters respectively.

5.2 Experiment Analysis
Through the experiments, we want to answer two questions:

1. Can an assistant multi-model system improve the master
learners’ learning efficiency?

2. Can the number of real-environment interactions be re-
duced by MMAC while still provide a similar learning
performance compared to A3C?

To answer the first question, we compare the learning speed
of one master learner MMAC with 0, 2 and 4 assistant models
respectively and the baseline is one master agent with zero as-
sistant models. We use “MMAC_2" to represents the MMAC
experiment with 2 assistant models and “MMAC_4” with 4
assistant models. Three independent experiments are con-
ducted under each method and 1000 training epochs in each
experiment. The result is shown in Fig 4(a) with the task of
CartPole task and Fig 4(b) with LunarLander task. The x-

2007 —— MMAC
[baseline
s 175
&
D o ~~L/ NA_Y
=
=
9 125
S
E 100
> /
S L
< 75 /
o
£ /
%]
Q
= 2 //
0

0 5 10 15

20 25 30
Training Epochs (x20)

a. CartPole-v1 Task

35 40 as

600
—— MMAC

baseline

" \/M/

-200

Testing Accumulative Score

-400

0 5 10 15 20 25 30 35 40 as

Training Epochs (x20)
b. LunarLander-v2 Task

Figure 5: With the asymptotic performance, real-environment
interactions is reduced by MMAC

axis represents the training iteration (x20 epochs), and the
y-axis represents the corresponding cumulative rewards per
trajectory. We set the threshold H as 100, meaning the assis-
tant model are postponed from generating synthetic data until
the 100th iterations. According to the learning curves, the one
with 4 assistant models has a significant lift until convergence
in both tasks. With 2 assistant models, the learning speed also
has a noticeable increase in the first ~ 300 iterations. In the
LunarLander task, with the assistant model system, the pol-
icy quality is improved as well represented by the increased
cumulative rewards. The shadow represents the standard de-
viation on the cumulative rewards, and it also reflects the pol-
icy variance. With the assistant system, the policy variance is
reduced efficiently, especially inCartPole task, and we need
to give credit to the ensemble method. In the LunarLander
task, there is a big drop in the learning performance between
the 100th iteration and 200th iteration. This drop is caused by
the imperfect assistant model and the threshold H may need
to be set higher in a complex environment.

The second question intends to show the ability of MMAC
on scaling up the RL, especially in some circumstances where
the number of RL agents are limited, or the environment-
agent interactions are costly. We compare A3C with three
parallel agents with the MMAC that includes one master

learner and 2 assistant models. Even though the total num-
ber of agents is the same with both methods, the number
of real-environment interactive agents are different. The re-
sult is shown in Fig 5. With a third of the number of real-
environment interactions of A3C’s, MMAC provides asymp-
totic performance.

6 Conclusion

In this study, we explored an RL scaling and acceleration
method, Multi-model based Actor-Critic (MMAC). A decen-
tralized, multi-modal system is used to provide synthetic data
to an RL agent. Meanwhile, the RL agent’s data can be used
to optimize the environment models. MMAC encourages this
win-win work cycle (shown in Fig 3) to speed up the learning
process as well as to reduce the dependency on real environ-
ment interactions. This method extends RL to domains where
the environment is unknown, and true environment interac-
tions are limited. This approach also bridges multi-model
learning with DRL. The two comparison experiments show
that MMAC efficiently speeds up RL agents’ learning with
respect to cumulative rewards. Fewer interactive agents are
needed with MMAC to reach asymptotic policy performance
compared to A3C. This work also can be viewed as an adap-
tation of A3C for an unknown environment.

References

[Baltrusaitis et al., 2019] Tadas Baltrusaitis, = Chaitanya
Ahuja, and Louis-Philippe Morency. Multimodal machine
learning: A survey and taxonomy. [EEE Transac-
tions on Pattern Analysis and Machine Intelligence,
41(2):423-443, 2019.

[Bansal et al., 2017] Somil Bansal, Roberto Calandra, Kurt-
land Chua, Sergey Levine, and Claire Tomlin. Mbmf:
Model-based priors for model-free reinforcement learning.
arXiv preprint arXiv:1709.03153, 2017.

[Chaslot et al., 2008] Guillaume Chaslot, Sander Bakkes,
Istvan Szita, and Pieter Spronck. Monte-carlo tree search:
A new framework for game ai. In AIIDE, 2008.

[Clemente et al., 2017] Alfredo V Clemente, Humberto N
Castejon, and Arjun Chandra. Efficient parallel meth-
ods for deep reinforcement learning. arXiv preprint
arXiv:1705.04862, 2017.

[Deisenroth et al., 2011] Marc Peter Deisenroth, Carl Ed-
ward Rasmussen, and Dieter Fox. Learning to control
a low-cost manipulator using data-efficient reinforcement
learning. 2011.

[Deisenroth et al., 2015] Marc Peter Deisenroth, Dieter Fox,
and Carl Edward Rasmussen. Gaussian processes for
data-efficient learning in robotics and control. I[EEE
transactions on pattern analysis and machine intelligence,
37(2):408-423, 2015.

[Depeweg et al., 2016] Stefan Depeweg, José Miguel
Hernandez-Lobato, Finale Doshi-Velez, and Steffen Ud-
luft. Learning and policy search in stochastic dynamical
systems with bayesian neural networks. arXiv preprint
arXiv:1605.07127, 2016.

[Foerster et al., 2017] Jakob Foerster, Gregory Farquhar,
Triantafyllos Afouras, Nantas Nardelli, and Shimon
Whiteson. Counterfactual multi-agent policy gradients.
arXiv preprint arXiv:1705.08926, 2017.

[Gu eral., 2016] Shixiang Gu, Timothy Lillicrap, Ilya
Sutskever, and Sergey Levine. Continuous deep g-learning
with model-based acceleration. In International Confer-
ence on Machine Learning, pages 2829-2838, 2016.

[Guo et al., 2014] Xiaoxiao Guo, Satinder Singh, Honglak
Lee, Richard L Lewis, and Xiaoshi Wang. Deep learn-
ing for real-time atari game play using offline monte-carlo
tree search planning. In Advances in neural information
processing systems, pages 3338-3346, 2014.

[Hwang et al., 2015] Kao-Shing Hwang, Wei-Cheng Jiang,
and Yu-Jen Chen. Model learning and knowledge shar-
ing for a multiagent system with dyna-q learning. /EEE
transactions on cybernetics, 45(5):978-990, 2015.

[Kurutach et al., 2018] Thanard Kurutach, Ignasi Clavera,
Yan Duan, Aviv Tamar, and Pieter Abbeel. Model-
ensemble trust-region policy optimization. arXiv preprint
arXiv:1802.10592, 2018.

[Levine ef al., 2016] Sergey Levine, Chelsea Finn, Trevor
Darrell, and Pieter Abbeel. End-to-end training of deep
visuomotor policies. The Journal of Machine Learning
Research, 17(1):1334-1373, 2016.

[Lowe et al., 2017] Ryan Lowe, Yi Wu, Aviv Tamar, Jean
Harb, OpenAl Pieter Abbeel, and Igor Mordatch. Multi-
agent actor-critic for mixed cooperative-competitive envi-
ronments. In Advances in Neural Information Processing
Systems, pages 6379-6390, 2017.

[Mann and Choe, 2011] Timothy Arthur Mann and Yoon-
suck Choe. Scaling up reinforcement learning through tar-
geted exploration. In Twenty-Fifth AAAI Conference on
Artificial Intelligence, 2011.

[Mishra et al., 2017] Nikhil Mishra, Pieter Abbeel, and Igor
Mordatch. Prediction and control with temporal segment
models. arXiv preprint arXiv:1703.04070, 2017.

[Mnih er al., 2015] Volodymyr Mnih, Koray Kavukcuoglu,
David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidje-
land, Georg Ostrovski, et al. Human-level control through
deep reinforcement learning. Nature, 518(7540):529,
2015.

[Mnih er al., 2016] Volodymyr Mnih, Adria Puigdomenech
Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asyn-
chronous methods for deep reinforcement learning. In In-
ternational conference on machine learning, pages 1928—

1937, 2016.

[Nagabandi er al., 2018] Anusha Nagabandi, Gregory Kahn,
Ronald S Fearing, and Sergey Levine. Neural network dy-
namics for model-based deep reinforcement learning with
model-free fine-tuning. In 2018 IEEE International Con-
ference on Robotics and Automation (ICRA), pages 7559—
7566. IEEE, 2018.

[Peng et al., 2018] Baolin Peng, Xiujun Li, Jianfeng Gao,
Jingjing Liu, and Kam-Fai Wong. Deep dyna-q: Integrat-
ing planning for task-completion dialogue policy learning.
In Proceedings of the 56th Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 1: Long Pa-
pers), volume 1, pages 2182-2192, 2018.

[Pong et al., 2018] Vitchyr Pong, Shixiang Gu, Murtaza
Dalal, and Sergey Levine. Temporal difference models:
Model-free deep rl for model-based control. arXiv preprint
arXiv:1802.09081, 2018.

[Sutton, 1990] Richard S Sutton. Integrated architectures for
learning, planning, and reacting based on approximating

dynamic programming. In Machine Learning Proceedings
1990, pages 216-224. Elsevier, 1990.

[Weber et al., 2017] Théophane Weber, Sébastien
Racaniere, David P Reichert, Lars Buesing, Arthur
Guez, Danilo Jimenez Rezende, Adria Puigdomenech
Badia, Oriol Vinyals, Nicolas Heess, Yujia Li, et al.
Imagination-augmented agents for deep reinforcement
learning. arXiv preprint arXiv:1707.06203, 2017.

[Wei et al., 2018] Haoran Wei, Kevin Corder, and Keith
Decker. Q-learning acceleration via state-space partition-
ing. In International Conference on Machine Learning on
Applications, 2018.

[Williams, 1992] Ronald J Williams. Simple statistical
gradient-following algorithms for connectionist reinforce-
ment learning. Machine learning, 8(3-4):229-256, 1992.

