SEERL: Sample Efficient Ensemble Reinforcement Learning

Rohan Saphal'*, Balaraman Ravindran', Dheevatse Mudigere”, Sasikanth
Avancha® and Bharat Kaul?

Indian Institute of Technology Madras
2Parallel Computing Lab, Intel Labs

rohansaphal @gmail.com, ravi@cse.iitm.ac.in, dheevatsa@gmail.com, sasikanth.avancha@intel.com,
bharat.kaul @intel.com

Abstract

Reinforcement learning algorithms are sensitive to
hyper-parameters and require tuning and tweak-
ing for specific environments for improving perfor-
mance. Ensembles of reinforcement learning mod-
els on the other hand are known to be much more
robust and stable. However, training multiple mod-
els independently on an environment suffers from
high sample complexity. Leveraging the theory of
cyclic learning rates from deep learning, we present
here a methodology to create multiple models from
a single training instance that can be used in an en-
semble. This allows training a single model that
converges to several local minima during its op-
timization process. By saving the model parame-
ters (policy) at each such instance, we obtain multi-
ple policies during training that are ensembled dur-
ing evaluation. We evaluate our approach on chal-
lenging discrete and continuous control tasks and
also discuss various ensembling strategies. Our
framework is substantially sample efficient, com-
putationally inexpensive and is seen to outperform
other baseline approaches.

1 Introduction

Deep reinforcement learning over the years has made con-
siderable advancements applicable across a variety of do-
mains. From learning to play Atari 2600 suite from raw visual
inputs[Mnih et al., 2015], mastering the game of Go [Silver et
al., 2017], learning locomotion skills for robotics [Schulman
et al., 2015b; Schulman et al., 2015a; Lillicrap et al., 2017]
and most recently, the development of Alpha Fold [Evans et
al.,] to predict the 3D structure of a protein solely based on its
genetic sequence, have all pushed the boundaries of research
in reinforcement learning.

However, the task of creating a single agent that can give
robust and stable performance across multiple environments
without having to tune and tweak the hyper-parameters is not
a trivial one. The more tuning and tweaking required for an
agent, the less “autonomous” it is and reduces the chance for

*Contact Author
T Author is now affiliated with Facebook.

it to generalize to novel environments.

Typically, the performance of an agent on an environment is
improved by, modification of neural network architectures to
learn better state representations, trying different activation
functions, reward scaling and different weight initialization
for the neural network architecture . However, this trial and
error approach to improving the agent’s performance simply
cannot be used in practice owing to high sample complex-
ity and computational expense involved. Ensemble meth-
ods,however, are known to be extremely valuable for tackling
complex problems. The relative success of ensemble meth-
ods can be attributed to its ability to tackle a wide range of
instances that require different low-level approaches.
Traditionally, the idea of using ensembles in reinforcement
learning settings is associated with combining multiple value
functions or policies from different models. These models
could be the same algorithm trained across different hyper-
parameter settings or different algorithms altogether. Training
multiple such models is an approach that simply cannot be
used in practice.

Our work tackles the above drawbacks by leveraging the the-
ory of cyclic learning rates to learn multiple models from a
single training instance. Stochastic gradient descent [Bottou,
2010] and its accelerated variants [Kingma and Ba, 2014;
Duchi et al., 2011] have become the de-facto approach to
optimizing neural networks and have become popular for
its ability to avoid local minima and spurious saddle points
[Dauphin et al., 2014].[Huang et al., 2017] have shown that
these local minima contain useful information that can im-
prove the model performance. Although there are both good
and bad local minima,[Keskar et al., 2016] argue that local
minima with flat basins tend to generalize better. At larger
learning rates, the random motion across gradient steps pre-
vents the optimizer from reaching any of the sharp basins and
moves into the general vicinity of the local minima. Lower-
ing the learning rates at such an instance leads the optimizer
to converge to some final local minima. We leverage the di-
versity of the policies learned at these different local minima
for the ensemble. Our main contributions are:

e A sample efficient framework for learning M diverse
models from a single training instance at no additional
cost.

e A practical approach to selecting robust policies, from a

diverse set, for ensemble

e Performance of various ensemble strategies for discrete
and continuous action spaces.

Since we use models from a single training instance instead
of training M different models independently from scratch,
we refer to our approach as Sample Efficient Ensemble Rein-
forcement Learning (SEERL).

2 Related work

There has recently been a good body of work on using en-
sembles for reinforcement learning. Most of the work is as-
sociated with ensembles during the training phase in order to
reduce the variance and improve the robustness of the policy
being learned.

[Anschel ef al., 2017] trains multiple Q networks in parallel
with different weight initialization and averages the Q val-
ues from all the different networks in order to reduce vari-
ance. This results in policies being learned that outperforms
baselines and are much more stable. However, the approach
requires training multiple networks simultaneously and a pos-
sibility that the model might diverge if either of the Q values
being averaged is biased.

Another interesting work falls under the umbrella of model-
based reinforcement learning [Kurutach et al., 2018]. Mul-
tiple neural networks are initialized to learn a model of the
environment using samples from the real system. Although
the framework is sample efficient, it is costly to train multiple
models. Using cycling learning rates, we could obtain mul-
tiple models from a single training instance for training the
agent at no additional computation costs.

Earlier works [Wiering and Van Hasselt, 2008; Duell and
Udluft, 2013; FauBer and Schwenker, 2015a; FauBer and
Schwenker, 2015b] explore the idea of value function ensem-
bles and policy ensembles during evaluation phase. However,
value function ensembles from different algorithms trained
independently could degrade performance as they tend to
converge to different fixed points and thereby have different
bias and variance.[Marivate and Littman, 2013] tries to tackle
this problem by having a meta-learner linearly combine the
value functions from the different algorithms during training
time so as to adjust for the inherent bias and variance. Al-
though training multiple algorithms in parallel is sample effi-
cient, it is still far away from being a practical approach.

Our method combines the best of both approaches and im-
proves the performance of the algorithm by balancing sample
complexity with the computational expense. Our work is in-
spired by the recent findings of [Smith, 2015; Loshchilov and
Hutter, 2016; Huang et al., 20171, who showed that cycling
learning rates are effective for training convolutional neural
networks and ensembling in supervised learning settings. The
authors show that each cycle produces models which are al-
most competitive to those learned with traditional learning
rate schedules. Though the models are seen to temporarily
suffer in performance once the cycle restarts, they eventually
surpass the previous cycle as the learning rate is annealed.
The authors suggest that cycling the learning rate perturbs the
parameters of a converged model, allowing the model to find
a better local minimum. [Huang et al., 2017] have shown that

there is significant diversity in the local minima visited dur-
ing each cycle and exploiting this diversity using ensembles
can lead to better performance.

3 Preliminaries

Reinforcement learning deals with sequential decision mak-
ing and considers the interaction of an agent with an en-
vironment. In this paper, we consider a discrete time fi-
nite horizon Markov Decision process(MDP) defined by (.5,
A, P, p;, T,), where S denotes the set of states, A de-
notes the set of actions, P : S x A — S the transition
function, p;, the probability distribution over the initial states,
r: S x8 x A — R, the reward function and ~ the dis-
count factor. A policy dictates the behaviour of an agent at
a particular state in an environment. More formally, a pol-
icy is defined by 7(s) : S — P(A) where P(A) denotes the
probability distribution over actions a ¢ A in a state s € S.
The objective of the agent is to maximize the discounted re-
turn R; = ZZT:t vt r(s;,8:11,a;), where 1(s;,5;11,a;) is the
reward function.

4 Sample Efficient Ensemble Reinforcement
Learning

SEERL results in an ensemble of diverse policies obtained
from a single training instance. Unlike supervised learning,
where the dataset can be reused for training different mod-
els, in reinforcement learning, the agent has to interact with
the environment to learn. The resultant markov chain cannot
be reused for training another model free agent from scratch.
Therefore, training multiple agents independently for ensem-
ble suffers from high sample complexity. If each agent re-
quires N number of samples and the computational expense
for training a single agent is C, then training M agents inde-
pendently require M x N samples and M x C'in computa-
tional cost. If trained in parallel, only N samples are required
but the computational cost remains at M x C'. Though train-
ing multiple agents in parallel is a sound solution to tackle
sample complexity, it is computationally expensive and lim-
its the diversity among the learned policies, since every policy
observes the same state at each instance.

Our approach saves policies during training at periodic inter-
vals when the learning rate anneals to a small value and en-
sembles them during evaluation time. SEERL requires only
N number of samples, the computational expense is C' and
yet we obtain M models for the ensemble. Since the poli-
cies have been saved at different local minima, the policies
are diverse in nature.

4.1 Cycling cosine annealing

We use the cycling learning rate schedule proposed by
[Loshchilov and Hutter, 2016]. Depending on the number of
epochs to train the agent and the number of models needed for
the ensemble, the learning rate schedule is calculated. As the
learning rate anneals to a small value, the model converges to
a local minimum and the first policy is obtained. By increas-
ing the learning rate, the model is perturbed and dislodged
from its local minima. In other words, if M models required,
we split the training process into M different training cycles

wherein each cycle the model starts at a large learning rate
and anneals to a small value. The large learning rate is sig-
nificant as it provides energy to the policy to escape the local
minima and the small learning rate traps it into a well behaved
local minima. The formulation is as follows:

1= on (AT)

where oy is the initial learning rate, ¢ is the episode number
and T is the total number of episodes for which the agent is
trained.

Cosine cyclic annealing

0.010 -

0.008 -

0.006 -

0.004

learning rate

0.002

Policy 1 Policy 2 Policy 3 Policy 4 Policy 5

0.000

T T T T T T
0 10000 20000 30000 40000 50000
Episodes

Figure 1: Cycling cosine annealing learning rate schedule. «p is set
at 0.01, number of models M = 5 and training episodes 1" = 50000

4.2 Learning policies

As training starts, a single policy is initialized and the learn-
ing rate starts at a large value. Given the algorithm is required
to train for 7" epochs and we would like to acquire M mod-
els, the learning rate starts annealing until it reaches its low-
est value at T'/M epochs. The first policy is saved at this
instance and at (T'/M + 1) epoch, the learning rate resets
to its high value. M models are obtained at the end of the
training cycle using this learning rate schedule. It is possi-
ble to learn multiple policies using other learning rate sched-
ules but it is difficult to ascertain whether the policies learned
will be diverse. In the case of following a step-wise learning
rate schedule where the learning rate decreases after a certain
number of epochs, it is possible to save the model at each of
the instances where the learning rate steps down. However,
each of the policies learned in this process could be from the
same local minima. Cycling learning rates on the other hand
completely remove this ambiguity.

4.3 Policy selection

The policies obtained during the training instance are diverse
in nature and of different performance capabilities. Ideally,
the best m policies are selected for the ensemble so as to
avoid bias from the poor policies. We can obtain the perfor-
mance capacity of each policy by evaluating the policy in the
environment. However, evaluating multiple policies requires
samples from the environment and is not a practical approach
to selecting the m (m < M) policies. We make a calculated
decision to choose the last m of M trained policies. Since
the final M*" policy is closest to the optimal policy and the
(M — 1)* policy is naturally the closest in comparison to

Algorithm 1 SEERL

Input: Intialize a policy g, training episodes 7",evaluation
episodes 7", number of policies M, maximum learning rate
ag, number of policies to ensemble m, ensemble strategy E,
D to store the policies
Output: Average reward during evaluation
Training

1: whilet < T do

2: Calculate the learning rate, based on the inputs to the
cosine annealing learning rate schedule f
a(t) = flao,t, T, M)
Train the agent and optimize using a(t)
if t mod (T/M) then

Save policy 7} in D fori =1,2..., M

7: endif

8: end while
Evaluation

1: Select the last m(m < M) policies from D

2: Select an ensemble strategy E

3: whilet < T’ do

4: Collect actions from the m policies, a1, as . . ., a,, for
environment state s

5: Find the optimal action, a* using

6 Perform action a™ on the environment

7: Obtain cumulative reward for the episode, 7;

8

9

AN AN

: end while
: return Average reward obtained during evaluation

other policies, to the optimal policy. Hence choosing the last
m policies is justified. By compromising on a fraction of
improvement in performance, SEERL becomes highly sam-
ple efficient even during evaluation phase. However, for our
baseline methods, it is not evidently clear how to select the
m policies from the total M without evaluating it individu-
ally in the environment. If each policy is evaluated using the
method suggested by [FauBer and Schwenker, 2015b] using
N’ samples from the environment, a total of M x N’ samples
are used up in selecting the m policies.

4.4 Ensemble at evaluation time

The policies learned during training are ensembled strategi-
cally during evaluation phase. We compare our work with
two other baseline methods. If there are A algorithms and M
policies are required for ensemble, our first baseline would
consist of M independently trained policies from a single al-
gorithm with various hyper-parameter settings. The second
baseline would consist of M /A independently trained poli-
cies from each of the A algorithms. Policy selection could be
applied over the set of policies and the best m can be chosen.

5 Ensemble techniques

Once the m policies are chosen,selecting the optimal ensem-
ble strategy is a challenging task. Depending on the complex-
ity of the action space, discrete or continuous, there are mul-
tiple strategies to ensemble the actions in the environment.
When building ensembles, each of the m policies are loaded

in parallel and provided with an observation from the envi-
ronment. Based on the observation, every policy outputs an
action. The ensemble strategy decides which action to select
based on the available set of actions. We divide the ensem-
ble strategy into two categories, based on the complexity of
the action space, into strategies for discrete and continuous
action spaces.

5.1 Ensemble in discrete action spaces

In discrete action spaces, majority voting is considered as a
good solution. Due to different fixed point convergences of
value functions of algorithms trained independently, it is not
possible to compare actions by their @) values.

m(als) = argmax [Z Nm(s,a)]

a€A(s) meM

where N,, (s, a) is one if the agent m takes action a in state
s, else zero. It the case of a tie, a random action is chosen
among the set of actions having the tie.

5.2 Ensemble in continuous action spaces

In continuous action spaces,[Duell and Udluft,
2013]proposes multiple strategies to find the optimal
action. However, performance comparison of the strategies
is not provided and environments considered are too simple.
The different strategies are as follows:

e Averaging: This is a naive approach to finding the op-
timal action. We take the average of all the actions as
part of the ensemble. In case of vector actions, the aver-
age is calculated for each of the vector dimensions. This
strategy could fail in settings where one or more of the
actions are extremely biased and thereby shifts the cal-
culated value away from the true mean value.

e Binning: This is the equivalent of majority voting in
continuous action space setting. We discretize the ac-
tion space into multiple bins of equal size and average
the bin with the most number of actions. The average
value obtained is the optimal action to take. Through this
method, we have simply discretized the action space,
sorted the bins based on its bin-count and calculated the
mean of the bin with the highest bin-count. The only pa-
rameter to be specified here is the number of bins to be
selected.

e Density based Selection : This approach tries to search
for the action with the highest density in the action
space. Given M action vectors, a, each of k& dimensions
to be ensembled, we calculate the density of each action
vector using Parzen windows as follows:

Z{":l(ail*ﬂjz)2
- Sz

di:Ze T

The action with the highest density is selected as the fi-
nal action. The only parameter to be specified is r and
we have chosen = 0.0001 in our experiments.

e Selection through Elimination: This approach elimi-
nates action based on the Euclidean distance. We cal-
culate the mean of all the action vectors and compute
the euclidean distance to each of the actions from the
mean. The action with the largest euclidean distance is
eliminated and the mean is re-computed. The process
is repeated until two actions remain. The final action is
chosen as the average of the two actions.

6 Experiments
Through our experiments, we answer the following questions:

e How does SEERL compare against traditional ensem-
bles in terms of sample complexity and final perfor-
mance?

e Performance of the different ensemble strategies in con-
tinuous action spaces

6.1 Environments and Algorithms

To answer the above questions, we evaluate our method over
environments having raw visual inputs and vector observa-
tions. We consider the Breakout environment from the Atari
2600 game suite and Half Cheetah from Mujoco [Todorov
et al., 2012]. We conduct our experiments on the following
algorithms, A2C [Mnih er al., 2016], ACER [Wang et al.,
2016], ACTKR [Wu er al., 2017], DDPG [Lillicrap et al.,
20171, PPO [Schulman et al., 2017] and TRPO [Schulman et
al.,2015a]

6.2 Training and evaluation setup

Each algorithm is trained across multiple seeds and differ-
ent hyper-parameter settings. We choose the seed and hyper-
parameters of the best performing combination for training
SEERL and we compare with the same. The baseline meth-
ods use linearly decreasing learning rate schedule throughout
all the experiments and the maximum learning rate value is
the same in both cases.

6.3 Results

Training results

We compare the training performance of SEERL with the
baseline training strategy in Figure 2. The ambiguity that
cosine cycling annealing learning rate will lead to poor con-
vergence as a result of shifting from zero to the maximum
learning rate multiple times, is mitigated through our results.
SEERL performance during training is at par and sometimes
better than the baseline.

Evaluation results

We present two baseline ensemble methods, B1 and B2, to
compare against SEERL. B1 ensembles multiple indepen-
dently trained policies from the same algorithm. B2,on the
other hand, ensembles multiple independently trained poli-
cies from different algorithms. The main results of SEERL
with m = 5 and its performance comparison with baseline
methods is summarized in Table 1 and Table 2. Each of the
methods is evaluated in the true environment for 20 episodes
and the average reward is shown.We observe that Binning and
Density based strategies seem to perform well in most cases,

DDPG

400
5 300
H
& 200

100

2000
1500

T

£ 1000

H

g
£ 500

—— SEEL 0
—— baseline

—— SEEL
—— baseline

0 20000 40000 60000 80000 100000 120000 140000 0 1000
Updates

2000

Episod

3000 4000 5000 0 1000 2000 3000 4000 5000
es

Figure 2: Comparison between SEERL and baseline during training. Breakout training performance on A2C and Half Cheetah training

performance on DDPG and PPO is shown

followed by Selection through Elimination and finally Aver-
aging. Experiments show that SEERL is at par with or outper-
forms baseline methods during evaluation. Our framework is
therefore much more sample efficient than baseline methods.

| Method | Algorithm | MV

SEERL A2C 340
ACER | 352
ACKTR | 372
Bl A2C 331
ACER | 356
ACKTR | 360

B2 A2C (1)
ACER (2) | 358

ACKTR (2)

Table 1: Comparison of SEERL with baseline ensemble methods
during evaluation in Breakout. Majority voting (MV) is employed
as the ensemble strategy. The number shown in brackets for algo-
rithms in B2 indicates the number of models of the algorithm used
for ensemble.

| Method | Algorithm | AVG | BNG | DB | STE |

SEERL DDPG 4722 | 5112 | 4961 | 4882
PPO 1330 | 1492 | 1360 | 1394
TRPO 604 590 612 595
B1 DDPG 4360 | 4975 | 4680 | 4960
PPO 540 570 640 512
TRPO 560 632 578 584
B2 DDPG (1)
PPO (2) 1150 | 1340 | 1284 | 1240
TRPO(2)
Table 2: Comparison of SEERL with baseline methods

in Half Cheetah. Different ensemble strategies, Averag-
ing(AV),Binning(BNG), Density based(DB) and Selection through
Elimination(STE) are employed during evaluation.

Performance of individual policies

We evaluate the individual policies obtained with SEERL and
baselines to gauge their performance. The analysis helps in
understanding how the diversity in policies improve perfor-
mance during ensemble. We evaluate the individual policies
for the case, where M = 5. By understanding the perfor-
mance of individual policies, we can justify our policy selec-

tion strategy of choosing the last m (m < M) of M policies.
Table 3 and Table 4 show the analysis for discrete and contin-
uous control tasks.

| Method | Algorithm | Policy no. | Performance |

SEERL | A2C 1 25
2 80

3 144

4 192

5 (final policy) 296

B1 A2C 1 305
2 290

3 312

4 330

5 278

B2 A2C 1 314
ACER 2 330

ACER 3 345

ACKTR 4 372

ACKTR 5 388

Table 3: The performance of individual policies used during ensem-
ble for Breakout. For B1, the five policies are from A2C trained
independently. For B2, the five policies are from the different algo-
rithms trained independently

Diversity of Policies

The performance of SEERL depends on the diversity of the
individual policies being learned. We have shown earlier, the
performance of the individual policies being learned and the
diverse nature in their individual performance. We hope to
establish more concretely the diversity of the individual poli-
cies by understanding the action distribution across states for
each policy. We compute the KL divergence between the poli-
cies based on the action distribution across a number of states.
The greater the KL divergence between the policies, the more
diverse the policies are. We see that the KL divergence be-
tween policies in SEERL is larger in magnitude and varies
sharply between policies. We present the pairwise KL diver-
gence between A2C policies in Fig 3a

Effect of varying the number of cycles

The performance of SEERL is significantly affected through
the selection of M. Given a fixed training budget(number of
episodes to train the agent), there is a certain range of values
of M that can be chosen to achieve good performance. For a
fixed training budget, if the value of M chosen to be is very

Breakout Breakout

(a) Left: Baseline. Right: SEERL

0 20000 40000 60000 80000 100000 120000 140000 0
Updates

20000 40000 60000 80000 100000 120000 140000
Updates

(b) Training performance of SEERL with A2C as number of cycles (M) vary

Figure 3
| Method | Algorithm | Policy no. | Performance | a value ranging between 0.01 to 0.0001 throughout our ex-
periments. Figure 4 and Table 6 compares the performance
SEERL | DDPG é 431481(9)8 of SEERL with different values of cvg and M = 9
3 4322 Breakout
4 4954 400
5 (final policy) 4718 p %0
B1 DDPG 1 3834 2 20
2 4650 100
3 5200 0
4 3924 0 20000 40000 5ooooup:ziot(;tsxo 100000 120000 140000
5 4340
B2 DDPG 1 5200 Figure 4: Training performance of SEERL with A2C as maximum
PPO 2 690 learning rate () varies
PPO 3 880
TRPO 4 544
TRPO 5 612 | ao | Performance |
o L . 0.006 158
Table 4: The performance of individual policies used during ensem-
. . . . 0.002 374
ble for continuous action space is evaluated. For B1, the five policies 0.0007 122

are from DDPG trained independently. For B2, the five policies are
from the different algorithms trained independently

large, the performance is seen to degrade. With larger M, the
training cycle for each policy is reduced, thereby reducing the
chance for the policy to settle to a good local minima before
it is perturbed again. In practice we find that setting the value
of M between 3 to 7 works reasonably well. Fig 3b and Table
5 compares the performance of SEERL varying M

| M | Performance |

3 340
5 392
7 322
9 308

Table 5: Performance of SEERL on Breakout as the number of cy-
cles (M) varies

Effect of varying maximum learning rate value

The maximum leaning rate value influences the performance
of the policies and therefore affects the performance of
SEERL. It directly impacts the perturbation of the local min-
ima and hence the diversity of the policies being learned. In
practice, we have seen that having a larger value tends to per-
form better, owing to the string perturbation it causes at dif-
ferent local minima leading to diverse policies. We have used

Table 6: Evaluation performance of SEERL with A2C on Breakout
as maximum learning rate (o) varies

7 Conclusion and Future work

In this paper, we introduce SEERL, a framework to ensem-
ble multiple policies obtained from a single training instance.
We utilize the ability of SGD to converge to and jump from
local minima as the learning rate cycles between low and
high values. Through our experiments, we show that the
policies learned at the different local minima are diverse in
their performance and hence are well suited for ensemble.
SEERL outperforms two commonly used baseline methods
in complex environments having discrete and continuous ac-
tion spaces. We show our results using various reinforcement
learning algorithms and therefore show that it is not limited to
its performance in any particular setting. Future work will ex-
plore better ways to select the best performing policies from
the entire set instead of selecting the last m of M models.
We would also investigate how to combine the learned poli-
cies during training time as a growing ensemble to stabilize
training.

References

[Anschel et al., 2017] Oron Anschel, Nir Baram, and Nahum
Shimkin. Averaged-dqn: Variance reduction and stabiliza-
tion for deep reinforcement learning. In Proceedings of

the 34th International Conference on Machine Learning-
Volume 70, pages 176-185. JMLR. org, 2017.

[Bottou, 2010] Léon Bottou. Large-scale machine learn-
ing with stochastic gradient descent. In Proceedings of
COMPSTAT 2010, pages 177-186. Springer, 2010.

[Dauphin ef al., 2014] Yann N Dauphin, Razvan Pascanu,
Caglar Gulcehre, Kyunghyun Cho, Surya Ganguli, and
Yoshua Bengio. Identifying and attacking the saddle point
problem in high-dimensional non-convex optimization. In
Advances in neural information processing systems, pages
2933-2941, 2014.

[Duchi et al., 2011] John Duchi, Elad Hazan, and Yoram
Singer. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning
Research, 12(Jul):2121-2159, 2011.

[Duell and Udluft, 2013] Siegmund Duell and Steffen Ud-
luft. Ensembles for continuous actions in reinforcement
learning. In ESANN, 2013.

[Evans et al.,] R Evans, J Jumper, J Kirkpatrick, L Sifre,
TFG Green, C Qin, A Zidek, A Nelson, A Bridgland,
H Penedones, et al. De novo structure prediction with
deeplearning based scoring. Annu Rev Biochem, 77:363—
382.

[FauBer and Schwenker, 2015a] Stefan FauBer and Fried-
helm Schwenker. Neural network ensembles in reinforce-
ment learning. Neural Processing Letters, 41(1):55-69,
2015.

[FauBer and Schwenker, 2015b] Stefan FauBer and Fried-
helm Schwenker. Selective neural network ensembles
in reinforcement learning: taking the advantage of many
agents. Neurocomputing, 169:350-357, 2015.

[Huang et al., 2017] Gao Huang, Yixuan Li, Geoff Pleiss,
Zhuang Liu, John E Hopcroft, and Kilian Q Weinberger.

Snapshot ensembles: Train 1, get m for free. arXiv
preprint arXiv:1704.00109, 2017.
[Keskar et al., 2016] Nitish Shirish Keskar, Dheevatsa

Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and
Ping Tak Peter Tang. On large-batch training for deep
learning: Generalization gap and sharp minima. CoRR,
abs/1609.04836, 2016.

[Kingma and Ba, 2014] Diederik P Kingma and Jimmy Ba.
Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[Kurutach et al., 2018] Thanard Kurutach, Ignasi Clavera,
Yan Duan, Aviv Tamar, and Pieter Abbeel. Model-
ensemble trust-region policy optimization. arXiv preprint
arXiv:1802.10592, 2018.

[Lillicrap et al., 2017] Timothy Paul Lillicrap,
Jonathan James Hunt, Alexander Pritzel, Nicolas
Manfred Otto Heess, Tom Erez, Yuval Tassa, David
Silver, and Daniel Pieter Wierstra. Continuous control
with deep reinforcement learning, January 26 2017. US
Patent App. 15/217,758.

[Loshchilov and Hutter, 2016] Ilya Loshchilov and Frank
Hutter. Sgdr: Stochastic gradient descent with warm
restarts. arXiv preprint arXiv:1608.03983, 2016.

[Marivate and Littman, 2013] Vukosi Ntsakisi Marivate and
Michael Littman. An ensemble of linearly combined
reinforcement-learning agents. In Workshops at the
Twenty-Seventh AAAI Conference on Artificial Intelli-
gence, 2013.

[Mnih et al., 2015] Volodymyr Mnih, Koray Kavukcuoglu,
David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidje-
land, Georg Ostrovski, et al. Human-level control through
deep reinforcement learning. Nature, 518(7540):529,
2015.

[Mnih ez al., 2016] Volodymyr Mnih, Adria Puigdoménech
Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap,
Tim Harley, David Silver, and Koray Kavukcuoglu. Asyn-
chronous methods for deep reinforcement learning. CoRR,
abs/1602.01783, 2016.

[Schulman et al., 2015a] John Schulman, Sergey Levine,
Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust
region policy optimization. In International Conference
on Machine Learning, pages 1889-1897, 2015.

[Schulman et al., 2015b] John Schulman, Philipp Moritz,
Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advan-
tage estimation. arXiv preprint arXiv:1506.02438, 2015.

[Schulman er al., 2017] John Schulman, Filip Wolski, Pra-
fulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. CoRR, abs/1707.06347,
2017.

[Silver et al., 2017] David Silver, Julian Schrittwieser,
Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur
Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian
Bolton, et al. Mastering the game of go without human
knowledge. Nature, 550(7676):354, 2017.

[Smith, 2015] Leslie N Smith. No more pesky learning rate
guessing games. arXiv preprint arXiv:1506.01186, 2015.

[Todorov et al., 2012] Emanuel Todorov, Tom Erez, and Yu-
val Tassa. Mujoco: A physics engine for model-based
control. In 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 5026-5033. IEEE,
2012.

[Wang et al., 2016] Ziyu Wang, Victor Bapst, Nicolas Heess,
Volodymyr Mnih, Rémi Munos, Koray Kavukcuoglu, and
Nando de Freitas. Sample efficient actor-critic with expe-
rience replay. CoRR, abs/1611.01224, 2016.

[Wiering and Van Hasselt, 2008] Marco A Wiering and
Hado Van Hasselt. Ensemble algorithms in reinforcement

learning. IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics), 38(4):930-936, 2008.

[Wu et al., 2017] Yuhuai Wu, Elman Mansimov, Shun Liao,
Roger B. Grosse, and Jimmy Ba. Scalable trust-region
method for deep reinforcement learning using kronecker-
factored approximation. CoRR, abs/1708.05144, 2017.

	Introduction
	Related work
	Preliminaries
	Sample Efficient Ensemble Reinforcement Learning
	Cycling cosine annealing
	Learning policies
	Policy selection
	Ensemble at evaluation time

	Ensemble techniques
	Ensemble in discrete action spaces
	Ensemble in continuous action spaces

	Experiments
	Environments and Algorithms
	Training and evaluation setup
	Results
	Training results
	Evaluation results
	Performance of individual policies
	Diversity of Policies
	Effect of varying the number of cycles
	Effect of varying maximum learning rate value

	Conclusion and Future work

