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Abstract
Experience replay buffer improves sample efficien-
cy and training stabilization for recent deep rein-
forcement learning (DRL) methods. However, for
the first-in-first-out (FIFO) retention widely used in
plain experience replay buffer, forgetting and gen-
eralization are problems in long-time training due
to the outflow of some experiences, especially in
limited buffer size. With the training progressing
and the exploration reducing, experiences generat-
ed by the learned policy are narrowed regions of the
state space, leading the policy to further fit the cur-
rent experiences and forget the knowledge obtained
from previous experiences. In this paper, we pro-
pose a reservoir sampling double replay buffer (RS-
DRB) framework to alleviate “forgetting” problem,
which can be represented by the generalization of
the policy. In the RS-DRB framework, experi-
ences are stored into one of the two buffers, i.e., the
buffers for exploration and exploitation, according
to its exploration, then experiences used for train-
ing are sampled from the two buffers with different
retention policies. We design an adaptive sampling
ratio between the two buffers to balance the distri-
bution of the state space. Empirical results show
that RS-DRB gains better training and generaliza-
tion performance than FIFO and some other reten-
tion policies.

1 Introduction
Deep reinforcement learning (DRL) combines the perception
ability of deep learning (DL) with the decision-making ability
of reinforcement learning (RL) [François-Lavet et al., 2018],
and has achieved great success in many fields, from clas-
sic physical control problems, such as DC motor [Babuška
and Groen, 2010], to more complex environments, such as
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Atari games [Mnih et al., 2015] and Go [Silver et al., 2016;
Silver et al., 2017]. However, there are some problems when
directly combining these two powerful methods. The stochas-
tic gradient optimization algorithms used in DL require da-
ta to satisfy the i.i.d. assumption, while the data sampled
by the RL agent are successive and strongly correlated. In
order to resolve this contradiction, the technology of replay
buffer [Lin, 1992] was used in DRL. Generally Speaking,
experiences, usually donated (s, a, r, s′), generated by inter-
acting with the environment are stored into a buffer, and al-
gorithms samples a batch of transitions uniformly from the
buffer for its training. The experience buffer not only solves
the above problems, but also improves the efficiency of the
experience and the stability of the DRL algorithm [Mnih et
al., 2015; Lillicrap et al., 2016].

Since the replay buffer has been successfully applied to
DRL, researchers have made improvements of replay buffer.
The experience sampling and retention are two core functions
of replay buffer, which determine the experiences required
for training. Prioritized experience replay (PER) [Schaul
et al., 2016] focuses on the instantaneous utility of expe-
riences and implements the prioritized sampling in replay
buffer based on the temporal difference error (TD-error).
While the retention method is related to the long utility of
experiences, which helps to prevent insufficient coverage of
the state space and improves the generalization of learned
policy. In [De Bruin et al., 2015; de Bruin et al., 2016a;
de Bruin et al., 2016b], they add experiences to two replay
buffers with first-in-first-out (FIFO) and a distance-based re-
tention policy, and use synthetic experiences to balance the
experience distribution between the two distributions respec-
tively generated by the current policy and a uniform poli-
cy. They also investigate some proxies to guide the retention
and sampling of replay buffer via prior knowledge on control
problems [de Bruin et al., 2018]. Hindsight experience re-
play (HER) in [Andrychowicz et al., 2017] provides another
approach to deal with sparse and binary rewards. Its key idea
is to learn from failure, actually adding implicit intermediate
goals to the replay buffer to facilitate learning.

In this paper, we focus on the retention method, which is
one of the core functions in replay buffer. When replay buffer
is full, the retention policy decides which experiences should



be replaced by new experiences. Almost all replay buffers
mentioned above use the FIFO retention. It requires the agent
to maintain exploration to preserve the sample diversity in the
buffer [de Bruin et al., 2016a]. However, RL algorithms usu-
ally use a gradual reduction in exploration in order to acceler-
ate achieving an optimal policy. With the decrease of explo-
ration rate and the improvement of learned policy, the experi-
ences generated by the current policy begin to focus on some
certain regions rather than the whole state space, reducing
the diversity. What is more serious is that it greatly increas-
es the possibility of “catastrophic forgetting” [Goodfellow et
al., 2013], i.e., forgetting the knowledge gained from previ-
ous learning. It is because the experiences about the previous
knowledge are washed out of the replay buffer over time by
the FIFO retention, especially for a small size buffer. It is
worth working on holding back the outflow of useful samples
to prevent the occurrence of the forgetting problem.

The main contribution of this paper is the introduction
of the Reservoir Sampling Double Replay Buffer (RS-DRB)
framework to alleviate the “forgetting” problem. The new
framework uses a straightforward way to divide experiences
into two replay buffers, then maintains the state distribution
of the entire experiences by different retention policies in two
buffers, and finally samples the experiences from two buffers
via an adaptive ratio. In the GridWorld experiment, we use
the generalization ability of the policy to represent the prob-
lem of forgetting. The RS-DRB framework can obviously
alleviate this problem. We also compare the different reten-
tion policies on more complex problems, and the results also
show that our framework is better.

2 Background
As a separate module, the RS-DRB framework can be com-
bined with different RL algorithms according to different
problems. In the experiments of this paper, we use the deep
Q-network (DQN) [Mnih et al., 2015] as a baseline algorithm
in discrete action problems, and in continuous action prob-
lems, we use deep deterministic policy gradient (DDPG) [Lil-
licrap et al., 2016] as a baseline algorithm for comparison.

2.1 Reinforcement Learning
RL is to train an agent by interacting with an environment.
The environment can be simply described by a state space S,
an action space A, a transition function T : S × A × S →
[0, 1], a reward function r : S × A → R and a discount
factor γ. The goal of the RL agent is to find the policy π∗ that
maximize the return defined as

Vπ(s) =
[ ∞∑
t=0

γtr(st, π(st))|s0 = s
]
.

The Q-function under the policy π is defined as

Qπ(s, a) =
[ ∞∑
t=0

γtr(st, at)|s0 = s, a0 = a
]
.

The Q-function under the optimal policy π∗, denotedQ∗, sat-
isfies the Bellman optimality equation [Bellman, 1958]:

Q∗(s, a) = r(s, a) + γ
∑
s′∈S

T (s, a, s′)max
a′∈A

Q∗(s′, a′).

2.2 Deep Q-Network
DQN is an end-to-end DRL algorithm whose input is a state
and output is the Q-value of each discrete action in this state.
In order to break the correlation between the experiences, ex-
periences obtained from interaction with the environment will
be first placed in the replay buffer D. When the network up-
dates, it samples a batch of experiences drawn uniformly from
the replay buffer, i.e., U(D), and minimizes the following
loss function:

L(θ) = E(s,a,r,s′)∼U(D)[(yt −Q(s, a; θ))2],

where the target value yt = (r+ γmaxa′∈AQ(s′, a′; θ−)), θ
represents parameters of the current Q-network, and θ− rep-
resents parameters of the target Q-network.

2.3 Deep Deterministic Policy Gradient
DDPG is also an end-to-end DRL algorithm whose input is a
state and output is a deterministic action, and can be applied
on continuous action problems. In DDPG, two neural net-
works are required to update: an actor network π : S → A,
and a critic network Q : S × A → R. The critic is updated
to minimize the loss function. Different with DQN, the target
value is calculated using the action that comes from the actor:
yt = r + γQ(s′, π(s′)). The actor is trained in the direction
that maximizes the expected Q-values Eπ[Q(s, π(s))].

3 Method
The RS-DRB framework, as shown in Algorithm 1, is a com-
bination of double buffers, reservoir sampling and adaptive
sampling ratio. Intuitively, exploring actions tends to a uni-
form policy which may search the entire state space, while
exploiting actions tends to the learned policy. So, exploration
buffer Dr stores the transitions according to exploration ac-
tions. Exploitation buffer Dg stores the transitions generated
by exploitation actions. Then the training batch is sampled
from the above two buffers with a ratio adaptive to the policy
update rate. We implement reservoir sampling, which guar-
antees that all stored experiences are equally sampled or re-
moved to better maintain the coverage of the state space.

3.1 Reservoir Sampling
The idea of reservoir sampling [Vitter, 1985] is to sample k el-
ements from a set of n elements with equal probability, where
n is very large or unknown. This method can be transformed
into a retention method of replay buffer, that is, the replay
buffer of size k is maintained (sampled) in all experiences
generated by interaction and experiences in replay buffer have
equal probabilities to be overwritten by new experiences.

Denoting the set of all generated experiences as Da. The
algorithm creates a reservoir of size k and fills it with the first
k elements of Da. It then iterates through the remaining ele-
ments of Da until exhausted. When the i-th (i > k) element
ofDa is generated, it has a k/i probability added to the reser-
voir. If the i-th element has added to the pool, then it has the
probability 1/k of being selected for replacement. When the
(i+1)-th element tries to add into the reservoir with the prob-
ability k/(i + 1), the probability that the i-th element is not



Algorithm 1 The RS-DRB framework

Input: buffer size k, sampling ratio τ , exploration threshold
η, interval time C for updating target network

1: Initialize two replay buffers Dr and Dg with size k/2
2: Initialize an RL algorithm A
3: for episode = 1, 2, · · · , M do
4: for t = 1, 2, · · · , T do
5: Sample an action at using current policy from A
6: if exploration rate > η then
7: Store transition (st, at, rt, st+1) into Dr
8: else
9: Store transition (st, at, rt, st+1) into Dg

10: end if
11: Generate the training batch Ds from Dr and Dg ac-

cording to τ
12: Perform optimization update using A and batch Ds
13: After C updates, update the target network and τ
14: end for
15: end for

replaced by the (i+ 1)-th element is 1− 1/(i+ 1). By anal-
ogy, we can get the probability formula that the i-th element
is retained in the reservoir:

P [(s, a, r, s′)i] =
k

i
×
S(Da)−i∏
n=1

(
1− k

i+ n
× 1

k

)

=
k

i
×
S(Da)−i∏
n=1

( i+ n− 1

i+ n

)
=

k

S(Da)
,

where S(Da) represents the size of Da. We can find that
the probability of each element retained in the reservoir is
only related with the sizes of reservoir and Da. When the
buffer is full, FIFO washes out the earliest experiences, while
all experiences in the buffer that use the reservoir sampling
method have equal probabilities to outflow. That is to say,
the reservoir sampling method is more likely to retain early
experiences than the FIFO method.

Since experiences of early thorough exploration can better
cover the entire state space, the retention method of reservoir
sampling may help to maintain the state distribution of the
replay buffer.

3.2 Double Replay Buffers
To search the entire state space for a global optimal policy,
exploration is necessary. In discrete action problems, an ε-
greedy policy can control the magnitude of the exploration
and the parameter ε is the probability of using the random
policy. While in continuous action problems, the noise N
is often used to drive exploration. Therefore, we can set a
threshold η, to determine whether the action belongs to ex-
ploration action ar or exploitation action ag .

Then we can denote replay buffer for exploration as Dr =
{(s, ar, r, s′)}. This buffer stores the transitions from the ex-
ploration rate greater than the threshold. In this buffer we im-
plement reservoir sampling for the overwriting purpose. The
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Figure 1: The stream of state distribution of training batch

second buffer for exploitation as Dg = {(s, ag, r, s′)} is to
store transitions generated by the greedy policy. This buffer
is overwritten by standard FIFO methods. In this paper, the
entire buffer D is the combination of Dg and Dr, and either
Dg or Dr has a half size of D.

In early period of training process, experiences in Dr and
Dg spread across almost the entire state space. When explo-
ration rate decreases and the policy improves, the experiences
generated by the current policy are narrowed to some regions
of state space, such as one trajectory. In order to maintain the
coverage of the entire state space, we implement reservoir
sampling in Dr to preserve more early experiences for main-
taining the entire state distribution. On the other hand, Dg
can still focus on the current policy with the FIFO method.

3.3 Sampling Ratio
Sampling ratio τ is a variable to control the proportion of ex-
periences in a training batch sampled from two replay buffers.
It is a parameter adaptive to policy change and the policy
change is empirically obtained by comparing actions from
two existing networks in DQN and DDPG: the current net-
work and the target network.

Given some training batches of experiences with size Nb,
we can obtain two sets of actions separately according to
current network and target network. By counting the num-
ber of the same actions nb from two sets of actions, we can
adjust the sample ratio τ as:

τ =
nb
Nb
× Tmax, (1)

where Tmax ∈ [0, 1] is a hyper-parameter to control the upper
bound of τ and the update of τ is the same as the frequency of
the target network. In each training batch with size Nb, τNb
experiences are sampled from exploration buffer Dr and the
rest ones are sampled from exploitation buffer Dg .

Directly using Eq. (1) as the sampling ratio may cause a
problem: in the early training period, the current network may
change frequently, which results in nb is not very large and τ
is small. Therefore we consider the exploration rate ε into the
sample ratio to guarantee thorough exploration:

τ = max
{
ε,
nb
Nb
× Tmax

}
. (2)
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Figure 2: A GridWorld example of the forgetting problem caused by the FIFO retention method

Now according to Eq. (2), in the early training period, τ is
dependent on ε rather than Eq. (1). In the late training pe-
riod, the exploration rate ε becomes very small and the pol-
icy is stable, two sets of actions are almost identical. Since
we have retained early experiences of exploration by reser-
voir sampling to prevent forgetting, we hope to sample some
experiences from exploration buffer Dr. Therefore, Eq. (1)
contributes more in the later learning.

3.4 Insight
The catastrophic forgetting problem that the neural network
forgets the knowledge gained from previous learning is main-
ly due to the fact that the experiences about the previous
knowledge are washed out of the replay buffer over time, es-
pecially with a small size buffer. We show how the RS-DRB
framework rearranges the state distribution to maintain the
coverage of the state distribution. The state distribution of
the sampled training batch is represented on a 2D coordinate:
exploration-exploitation, old experience-new experience, as
in Figure 1. We use dots in different patterns to refer each
buffer retention policy. An arrow connecting two dots refers
to the stream of the state distribution.

In the training process of the RL algorithm A, the role of
the FIFO retention is actually a sliding window. So in Fig-
ure 1, FIFO represented by the circle always tends to be new
experiences. On the other hand, from the beginning to the
end of the training, because exploration rate ε is gradually re-
duced, the replay buffer gradually moves from the exploration
to the exploitation.

In the RS-DRB framework, we discuss two streams of the
state distribution based on Eq. (1) and Eq. (2), which are rep-
resented by hexagon and square separately in Figure 1, and
the effects of parameter Tmax on streams.

According to Eq. (1), because the policy changes greatly in
the early period, the sampling ratio is small and replay buffers
are more likely to sample from the exploitation buffer, it may
cause inadequate exploration in early period. In the later pe-
riod, as the policy changes smaller, the sampling ratio gradu-
ally increases to a value close to Tmax. Therefore, it will be

more inclined to exploration buffer. At the same time, due
to the reservoir sampling retention, a part of new experiences
are added to the exploration buffer with a certain probabili-
ty rather than probability 1. In this stream, we set Tmax to be
very large, and then there are more experiences sampled from
the exploration buffer in a training batch.

When using Eq. (2), we set a relative small value of Tmax.
At the early period, the parameter τ is the same as the explo-
ration rate ε in FIFO. At the later period, the change of the
state distribution is the same as the above due to the reser-
voir sampling – new experiences and old experiences in the
replay buffer are more balanced and experiences are likely
more evenly distributed across the state distribution. Mean-
while, the exploration rate ε becomes very small and τ is de-
pendent on Tmax because the target network and the current
network have almost the same policy. At last, the training
batch sampled from the two buffers can effectively reduce the
probability of the forgetting problem.

4 Experiments
In this section, we compare our RS-DRB framework with
some other replay buffer retention methods. We first use
DQN to train the policy on a designed GridWorld problem
and show that generalization of the policy can represent the
forgetting problem. Then, we conduct experiments using
DDPG on the Pendulum task as in [de Bruin et al., 2016a]
to illustrate the issue of forgetting problem.

4.1 GridWorld
We design a simple GridWorld with 10×10 size. The action
space has eight directions, referring the step ahead to the next
grid. The two-dimensional coordinate position of each small
grid is to represent all states in the environment. Each step
the environment gives agent a reward of -1 until it reaches the
terminate state. We set some blocks (denoted B, dark blue) in
the map to increase the difficulty of finding the optimal policy
as shown in Figure 2(a). And we also show the true state val-
ue and optimal direction of each grid. The grid colors change
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Figure 3: The performance on GridWorld

from blue to red as their state values increase. It is obvious
that the optimal policy from the starting point at left-lower
corner (denoted S) to the goal point at right-upper corner (de-
noted G) consists of two trajectories, which are represented
by green arrows and these two trajectories are identical in
terms of return.

At the beginning, due to the thorough exploration, experi-
ences can cover all the state space. Therefore the agent has
learned an almost global optimal policy. In Figure 2(b), the
agent at each grid can reach the goal. We can find that the
agent prefers the trajectory to the bottom right, and it still re-
members the optimal trajectory to the upper left. When the
exploration decreases and the neural network refines the pol-
icy, the experiences generated by the current policy begin to
focus on the preferred trajectory rather than the global op-
timal policy and the experiences about another optimal tra-
jectory may wash out of the replay buffer by FIFO. In Fig-
ure 2(c), red arrows represent the wrong directions. It can be
seen that the agent at some grids on the upper left trajecto-
ry goes away the shortcut, i.e., first to the optimal trajectory
on the lower right, and then to the goal. It has forgotten the
knowledge about the optimal trajectory on the upper left.

Configuration
We use DQN which has two hidden layers with 16 and 32
units as our RL algorithm, the parameter τ and the target net-
work are updated per 100 steps. The exploration rate ε decays
linearly from 1 to 0.1 during 1000 episodes. We totally train
50000 episodes in one trial and evaluate the generalization of
the current policy every 500 episodes. The final result is an
average of 5 trials. We compare the three retention methods
of replay buffer: FIFO, reservoir sampling (RS) and RS-DRB
and all of them utilize the uniform sampling method to sam-
ple experiences from the replay buffer. The size of replay is
16000 in FIFO and RS, and in RS-DRB, each buffer size is
8000. The hyper-parameter Tmax in GridWorld is set to 0.2.

Metrics
We evaluate the policy through two performances. The train-
ing performance is reflected by the cumulative reward from
the starting point to the goal. As mentioned above, two opti-
mal trajectory have the same cumulative reward. Therefore,
this performance can only show that the agent has found one

optimal trajectory, but it cannot show the performance of the
agent on the whole GridWorld. The generalization perfor-
mance is used to supplement the deficiency of the training
performance and can quantify the severity of the forgetting
problem in this problem. More specifically, we count the
number of the grids with the optimal actions (we call them
success grids) after training every 500 episodes. This is chal-
lenging because the agent must accurately remember the ac-
tion on each grid, otherwise it will not be able to reach the
goal with the smallest steps.

Performance
In Figure 3(a), three retention methods do not affect the agent
to find one optimal trajectory. The agent with FIFO or RS-
DRB finds one optimal trajectory faster than the agent with
RS. Because the RS method retains all the experiences with
equal probabilities, it cannot focus on the learned policy. So
the agent with the RS retention requires more episodes to find
one optimal trajectory. In Figure 3(b), it can be seen that the
agent with FIFO or RS only makes almost a half of grids ar-
rive the goal with the shortest trajectory. While RS-DRB can
make the agent arrive the goal with the shortest trajectory in
more grids than FIFO and RS. This shows that the RS-DRB
framework improves the generalization of the policy and al-
leviates the forgetting problem.

4.2 Pendulum
Pendulum swing-up is a classic continuous control problem.
We use the pendulum task from the classic control environ-
ment in OpenAI Gym [Brockman et al., 2016]. In this setting,
the state s is represented by the angle θ ∈ [−π, π] and the an-
gular velocity θ̇ ∈ [−8, 8]. The action u ∈ [−2, 2] is the
voltage applied to the motor that drives the torque on the pen-
dulum. The reward function is related to the voltage and the
relative angle between the current position and the upward
equilibrium position. When the pendulum position is verti-
cally upward in equilibrium and the voltage is zero, the agent
receives the maximum reward, which is zero. Meanwhile, the
dynamic of environment which controls the pendulum cannot
reach the equilibrium position directly by applying the max-
imum voltage, but needs to swing to the upright equilibrium
position by swinging left and right.
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Figure 4: The performance on Pendulum

In [de Bruin et al., 2018], the authors found the forgetting
problem in the pendulum with the limited buffer size. If the
agent converges to swing to a preferred direction, then it may
gradually forget the opposite (symmetrical) direction. Once
the initial direction changes, the agent cannot swing up to the
upright equilibrium position.

Configuration
We use DDPG in OpenAI Baselines1 to solve this prob-
lem. All settings are default except for the discount factor
γ = 0.95. We utilize the Ornstein-Uhlenbeck noise pro-
cess [Uhlenbeck and Ornstein, 1930] to drive exploration and
set the threshold η = 0.01 to determine the action whether
belongs to exploration or exploitation. The exploration rate
ε in Eq. (2) decays linearly from 1 to 0.1 during the all 3000
episodes. The evaluation of generalization performs per 10
episodes. The size of replay is 10000 in both FIFO and RS
methods, while RS-DRB has two buffers with 5000 capacity.
The hyper-parameter Tmax in Pendulum is set to 0.4.

Metrics
We also evaluate two performances. In the training period,
we record the episode return from a fixed initial state where
the pendulum is vertically downward and its acceleration is
zero. In the generalization performance, we set different ini-
tial angles θ from −π to π with the interval π/36 and keep
the same initial acceleration. Then we calculate the average
episode return of these 72 initial states as the generalization
criterion. If the agent only remembers one direction, then it
may not be able to swing up to the upward equilibrium posi-
tion at the opposite initial state, and this causes a decrease in
the generalization performance.

Performance
Due to the difficulty of continuous problems, more precise
control is required. Once the forgetting problem occurs, its
impact on performance can be more clearly observed. The
FIFO retention method cannot hold its best performance as
time progresses. It can be explained that the early exploratory
experiences begin to rush out of the buffer, while the new gen-
erated experiences are concentrated in the current preference

1https://github.com/openai/baselines

direction. The sample diversity of the buffer becomes insuf-
ficient, which is more likely to cause the forgetting problem.
From Figure 4, we can find that both of the generalization
and training performances of the FIFO method decrease after
1000 episodes. In the RS method, the probability that a new
experience generated by the learned policy is the same as the
probability of an early exploration experience. Therefore the
agent cannot concentrate on the learned policy. This caus-
es that the RS method achieves relative good performances
around 1500 episodes, much slower than FIFO and RS-DRB.
Our RS-DRB framework, which balances the exploration and
exploitation experiences in training, achieves the best per-
formance in terms of episode return and generalization. It
can be seen that RS-DRB learned a good policy around 1000
episodes which is the same as the FIFO method. After that,
RS-DRB maintains the good generalization performance in
all episodes without occurring the forgetting problem. Mean-
while, the training performance still improves.

5 Conclusion

This paper presented a new RS-DRB framework to retain
the experiences in the replay buffer. The exploration buffer
with the reservoir sampling helps to maintain the coverage
of the entire state space and the exploitation buffer, while
the FIFO method focuses on the current policy. The adap-
tive sampling ratio balances the experiences sampled from
these two buffers according to the change of the policy. In
experiments, we quantify the severity of the forgetting prob-
lem through the generalization performance. Empirically, we
find that our framework can improve the training and gener-
alization of the policy and alleviate the forgetting problem on
discrete and continuous problems. In the future, we would
like to combine our RS-DRB framework with some popular
sampling methods [de Bruin et al., 2018], and extend it to
improve the experience selection mechanism in deep multi-
agent RL domains [Lowe et al., 2017; Zheng et al., 2018;
Liu et al., 2019]. It would also be interesting to combine the
importance sampling mehods in PER with our sampling ratio
in more complex games [Foerster et al., 2017].
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