
Learning Effective Subgoals with Multi-Task Hierarchical
Reinforcement Learning

Dagui Chen1 , Qi Yan1 , Shangqi Guo1 , Zhile Yang1 , Xin Su1 and Feng Chen1

1 Tsinghua University
{cdg16, q yan15, gsq15, yzl18, suxin16}@mails.tsinghua.edu.cn, chenfeng@mail.tsinghua.edu.cn

Abstract
Hierarchical reinforcement learning (HRL) is a
promising direction of solving complex tasks, and
the success of it is determined by the acquisition of
effective and semantically distinct subgoals. Most
existing methods try to achieve this by introduc-
ing manual task-specific design and prior knowl-
edge, which limits the generality of methods and
the transferability of well-learned policies. We ar-
gue that this challenge is mainly because the single-
task optimization cannot provide enough motiva-
tion for learning effective subgoals, and it is nec-
essary to incorporate a multi-task setting into the
HRL framework. In this paper, we propose a novel
general multi-task HRL framework which is shared
among different tasks and can automatically extract
meaningful and transferable subgoals from multi-
ple related tasks without requiring prior knowledge.
Our framework consists of a task decomposition
network which decomposes complex tasks into se-
quential abstract subgoals in a latent embedding
space, and a parameterized skill network which ma-
nipulates atomic actions to yield the agent’s ab-
stract state close to the matching subgoal. Exten-
sive experiments on several challenging environ-
ments with extremely sparse reward demonstrates
that our method does learn effective subgoals and
provides superior performance over strong base-
lines.

1 Introduction
Hierarchical reinforcement learning (HRL) has proven capa-
ble of extending traditional reinforcement learning (RL) to
complex tasks with long-term credit assignment [Sutton et
al., 1999]. Nevertheless, whether HRL works depends on
whether effective subgoals can be obtained. An effective
subgoal should contain the following attributes: (i) Tempo-
rally abstracted. The subgoal should represent a temporal
abstraction of the agent’s behavior in a certain period. (ii)
Shared. The effective subgoal must be shared by other re-
lated tasks or by different episodes of the same task. The
hierarchical policies with such subgoals enable RL agents to
plan or explore at different time scales, which improves the
agent’s exploration efficiency [Nachum et al., 2018]. Besides,

The well-learned low-level policies that are used to handle
subgoals is independent of entire tasks and can be transferred
to previously unseen tasks [Barto and Mahadevan, 2003].

Most previous HRL approaches [Dayan and Hinton, 1993;
Parr and Russell, 1998; McGovern and Barto, 2001] attempt
to obtain effective subgoals by introducing some degree of
manual task-specific design, including domain knowledge for
architecture and assumptions about effective subgoals. Al-
though these artificial designs provide encouraging success,
they also limit the generality of methods and the transferabil-
ity of well-learned policies. For example, the “bottleneck”
states, i.e., states that are frequently visited on system tra-
jectory, are used as subgoals in [Stolle and Precup, 2002].
Such a setting assumes that all bottleneck states are critical
states, but it is not applicable in many cases. While a re-
cent work [Bacon et al., 2017] has shown the potential for
automatically learning subgoals in an end-to-end fashion, it
requires the regularisers [Vezhnevets et al., 2016] to prevent
degradation into a trivial solution.

In this paper, we argue that one critical reason why it is dif-
ficult to design an automatic HRL learning framework is that
the single-task optimization that most prior HRL works focus
on cannot provide enough motivation for learning effective
subgoals. In contrast, we propose a novel perspective for de-
signing HRLs: it is necessary to incorporate multi-task learn-
ing (MTL) [Zhang and Yang, 2017] into the HRL framework.
The core idea is inspired by the fact that discovering meaning-
ful and effective subgoals can facilitate improving the overall
multi-task performance. Therefore, aiming to solve multiple
related tasks simultaneously can motivate the agent to learn
effective subgoals. Besides, such the multi-task setting can
reduce the dependence on task-specific prior knowledge, en-
abling us to design a general framework scaling to various
tasks.

To enable HRL to benefit from multi-task optimization, we
further propose a novel HRL architecture (see Figure 2a) with
two levels of hierarchies, i.e., a high-level Task Decompo-
sition Network (TDN) and a low-level Parameterized Skill
Network (PSN). Different from previous methods focusing
on a single task, our TDN is required to be able to generalize
over tasks. It decomposes complex tasks into sequential sub-
goals in a latent embedding space conditioned on the current
state and task information. The TDN’s action (i.e., subgoal)
is associated with the target state that the PSN is expected
to achieve, and the TDN’s optimization is motivated by the

"Go to the red ball" "Open the red door after
you open the bule door"

"Put the yellow key
next to the red ball"

"Pick up the red box"

GoToLocal OpenDoorsOrder PutNextLocal UnlockPickup

Figure 1: Four environments in BabyAI to evaluate our algorithm. Each environment contains a set of tasks specified by instructions. The
text in each rectangle shows an example of instructions. The shaded grids represent the agent’s current observations. The details refer to
Section 5.

overall performance over a distribution of tasks. As for PSN,
it is responsible for executing subgoals parameterized by the
TDN’s action. Through the intrinsic reward function, the PSN
is encouraged to yield a state close to the desired subgoal. In
our framework, the PSN is shared by all subgoals, and it does
not need to know the number of subgoals and meaning of
each subgoal in advance.

Concretely, our contributions are three-fold. (i) We pro-
pose a new perspective for the HRL design, i.e., learning a
shared hierarchy of policy through multi-task setting, which
enables the HRL to automatically acquire effective subgoals.
(ii) We present a general HRL architecture, namely GMHRL
(i.e., General and Multi-task), that is suitable for different
tasks and requires little manual task-specific design. The
comparative experiments in several environments verify our
method’s superiority, and the visualization results show the
well-learned effective subgoals. (iii) Considering that learn-
ing the PSN with high-dimension subgoals requires exten-
sive training, we propose a novel reachable subgoals train-
ing method, in which only subgoals that can be achieved are
used for training. The method avoids massive invalid train-
ing, thereby improving the learning efficiency significantly.

2 Multi-task Optimization
The optimization problem we would like to solve is con-
ditioned on the multiple tasks with instructions. Each in-
struction I encodes a specific task and is sampled from a
distribution over tasks ρ(I). Formally, we formulate such
multi-task setting as a Multi-task Markov Decision Process
(MDP)M = (I,S,A,P,R), which consists of an instruc-
tion space I, a state space S, an action space A, a transition
function P(s′|s, a) and a reward functionR(r|s, a, I), where
(s, a, s′, r) are state, action, next state and reward, respec-
tively.

The agent receives an instruction I describing the current
task at the beginning of each episode and then interacts with
the task for T (I) timesteps (i.e., the predefined maximum
episode length) according to its policy πθ which is param-
eterized by θ. A policy is a mapping from an instruction-
following history (I, s0, a0, r0, s1, . . . , st−1) to the next ac-
tion at. Different from the traditional RL policy, the policy
πθ in multi-task MDP is shared among multiple tasks. More-
over, the optimization objective is to find a shared parameter

vector θ∗ to maximize the expected return over the distribu-
tion of instructions

θ∗ = arg max
θ

EI∼ρ(I)

T (I)−1∑
t=0

rt
∣∣πθ
 . (1)

For a hierarchy of policy, targeting Equation 1 as its opti-
mization objective can facilitate learning effective subgoals.
On the other hand, by comparing the overall performance on
multiple related tasks that are previously unseen, we can bet-
ter evaluate the transferability and effectiveness of the well-
learned subgoals.

In practice, we select BabyAI platform [Chevalier-Boisvert
et al., 2018] as the testbed which comprises an extensive suite
of instruction-following tasks with different difficulty levels,
as shown in Figure 1. The platform is based on a partially ob-
servable 2D grid-world environment which is populated with
various entities of different colors, such as the agent, balls,
boxes, doors, and keys [Chevalier-Boisvert et al., 2018]. The
agent can not only navigate the world but also manipulate the
world state, such as pick up or move around the objects, tog-
gle the boxes and use keys with matching color to unlock the
doors. Each environment contains various randomly gener-
ated related tasks which are specified by instructions.

Here, the instruction takes a simple and natural form, i.e.,
the language phrase that describes only the ultimate objective
of the task. Such instruction coding is generic and readily
available. All tasks in our setting are characterized by sparse
and extremely delayed rewards, that is, the agent receives a
positive reward signal only when the agent executes the in-
struction correctly within the time step limit, otherwise zero.
Such tasks have proven to be very challenging [Andreas et al.,
2017; Oh et al., 2017] and require the ability to perform ex-
ploratory navigation as well as complex sequences of object
manipulation. Therefore, HRL becomes a natural solution.

3 GMHRL Framework
3.1 Main Design
As shown in Figure 2a, our overall architecture consists of
an observation embedding module, a high-level TDN πH , a
low-level PSN πL. The embedding module maps the origi-
nal form of image observation input ot to the abstract state

Observation
Embedding
Module

Trajectory
Diagram

Parameterized Skill Network

Environment

Task Decomposition Network "Put the green key next to the yellow ball"

Instruction

Externel Reward

d-dimention embedding space

Instrinsic Reward

TDN

PSN

(a)

LSTM
Module

Instruction
Preprocessing
Module

Attention

High-level
Out Module

(b)

LSTM
Module

Subgoal
Preprocessing
Module

Attention

Low-level
Out Module

(c)

Figure 2: (a) The overall architecture of GMHRL. The below trajectory diagram in d-dimension embedding space illustrates our intrinsic
reward setting. The subgoal gt is generated by the TDN and remain fixed for N steps. The PSN aims to make the state after N steps st+N

closer to gt. (b) The network structure of TDN. (c) The network structure of PSN.

vector st in a d-dimension embedding space, where standard
metrics can be applied to measure the distance between two
states. At each time step t, the PSN observes current state
st and produces atomic actions to interact with the environ-
ment, conditioned on the subgoal gt that it receives from the
TDN. The intrinsic reward function encourages the PSN to
take actions to bring the future state closer to the desired
subgoal. As for TDN, it outputs a target state (i.e., sub-
goal gt) at the latent embedding spaces according to analyz-
ing current state st and the task coding I . In this way, the
TDN breaks up the complex task into a sequence of subgoals,
which compels the agent to execute suitable sequential behav-
iors to fulfill the entire task. Furthermore, following the com-
mon setting in goal-conditioned HRL [Nachum et al., 2018;
Vezhnevets et al., 2017], the TDN make decisions at a slower
and fixed timescale. In this work, the subgoal gt is gener-
ated by the TDN when t = 0, N, 2N, · · · , otherwise it remain
fixed gt = gt−1.

Concretely, our framework contains the following signif-
icant characteristics. (i) Since the number and meaning of
subgoals vary among different tasks, we do not consider con-
structing a sub-network for each subgoal. This technique
is popular in previous HRL methods [Sutton et al., 1999;
Stolle and Precup, 2002; Bacon et al., 2017]. In contrast,
we model our low-level policy as a skill network parameter-
ized by subgoals. It is shared by all subgoals and does not
require manual assumptions for effective subgoals. (ii) Com-
pared to traditional methods with single task setting, the TDN
is dedicated to optimizing the overall performance over a dis-
tribution of tasks (see Equation 1). It receives instructions as
input and can handle previously unseen tasks. (iii) We repre-
sent the state and subgoal in a latent embedding space instead
of in the raw form as used in [Nachum et al., 2018], which
means that our method can be applied to tasks with different
forms of observation (e.g., visual image).

3.2 Reward Settings
In our framework, the PSN does not care about how to imple-
ment the entire task. It only needs to master the skill to reach
the target state parameterized by a subgoal, which is the rea-
son for its name (i.e., PSN). This task-independent feature
allows the PSN to be transferred to other related tasks. The

PSN’s optimization is motivated by an intrinsic reward func-
tion that is also parameterized by subgoals. Different from the
directional intrinsic reward function which has been studied
previously in [Schaul et al., 2015; Vezhnevets et al., 2017],
our intrinsic reward function directly measures the distance
between st and gt, which can be written as follow,

rL(st, at, st+1, gt) = −D(st+1, gt) (2)

where D represents a metric in the d-dimension embedding
space. Here we use a simple Euclidean distance, and we also
compare other distance function in the ablation experiment.
This reward setting can motivate the subgoal to be associated
with the target state. Besides, because the subgoal gt remains
fixed for N steps, the PSN will learn how to yield the N -
step subsequent states st+N closer to the matching subgoal,
as shown in the trajectory diagram in Figure 2a.

Compared with the PSN, the TDN aims to optimize the
overall performance over a distribution of tasks. Therefore,
the reward function of the TDN is associated with the exter-
nal environment reward. Besides, considering that the TDN
operates at a frequency of N steps, we set its reward function
as rHt =

∑t+N−1
j=t R(r|sj , aj , I) when t = 0, N, 2N, · · · .

3.3 Learning
The PSN πL can be directly trained using standard policy
gradient method or TD learning. Here we choose A2C [Mnih
et al., 2016] algorithm with the stochastic policy gradient to
optimize the network’s parameters θL. A critical distinction
from the standard RL is that our PSN generalizes not only
over states but also over subgoals. Inspired by [Schaul et
al., 2015], we develop a universal stochastic policy gradient
method which can be written as follow

∆θL = AL(st, gt, at)∇θL log πL(at|st, gt; θL), (3)

where AL(st, gt, at) is the universal advantage function,
computed from the internal critic of the PSN.

Since the TDN’s action is a continuous d-dimension vec-
tor, we model the optimization of the TDN as a continuous
control. One of the most natural choice to update its param-
eters θH is deterministic policy gradient (e.g., DDPG [Lilli-
crap et al., 2015]). Every N time steps, the TDN transition

(I, st, gt, r
H
t , st+N) is stored in a memory for training. Sim-

ilarly, our TDN needs to generalize over instructions, so we
also develop a universal deterministic gradient method for the
TDN’s learning. The update rule is

∆θH = ∇gQH(st, I, g)
∣∣
g=πH(st,I)

∇θHπH(st, I; θH), (4)

where QH(st, I, g) is the universal action-value function,
computed from the internal critic of the TDN.

Finally, both high-level and low-level policies share the
same observation embedding module whose parameters are
updated by the two policy update algorithms simultaneously.
Besides, we add a pixel prediction head following this embed-
ding module as the auxiliary task which predicts the future
observation ot+1 conditioned on current state st and action
at. This technique has proven capable of helping achieve a
powerful feature representation [Jaderberg et al., 2016].

3.4 Reachable Subgoal Training
Although our PSN is general and can generalize over sub-
goals, it suffers from low learning efficiency. Previous HRL
methods that focus on decomposing tasks [Dayan and Hinton,
1993; Vezhnevets et al., 2017] also face this challenge. One
of the important reasons is that the high-level action space
is much larger than the target state space that the agent can
reach. If the high-level policy always set unreachable sub-
goals to the PSN, the PSN learning efficiency is significantly
reduced. To overcome this challenge, we propose a novel
reachable subgoal training method. In practice, we modify
the original TDN exploratory policy which adds noise to the
deterministic action in DDPG to output a reachable subgoal
with a high probability1. This method avoids a large amount
of invalid low-level training, which in turn speeds up the over-
all learning, which is verified in our ablation experiment.

The ideal way to generate reachable subgoal is to learn a
generative network. Here we adopt a simpler form. When
the agent faces a new environment, a memory is created to
store all states that the agent has seen in this environment.
All states in this memory can be treated as reachable target
states and sampled for the high-level action.

3.5 Network Detail
Because our TDN and PSN essentially deal with multiple
tasks which are specified by subgoal I and instruction g, re-
spectively, the two networks have similar network structures,
as shown in Figure 2b and Figure 2c. The LSTM [Hochre-
iter and Schmidhuber, 1997] module is applied to process
the state sequence. Because the subgoal and the instruction
have a lower update frequency, i.e., every N time steps and
every episode, we use an attention module to integrate the
mixed input with different time resolution, which is inspired
by [Chaplot et al., 2018]. Besides, in order to ensure the state
s and subgoal g are comparable, we transform both to the
same scale (e.g., apply normalization).

4 Related Work
HRL. How to discover meaningful and effective hierar-
chies of policies is a long-standing research topic. The

1The probability gradually decreases with training.

Environment name Max step Reward rate

GoToLocal 72 0.2717
OpenDoorsOrder 72 0.0425
PutNextLocal 144 0.0101
UnlockPickup 288 0.0029

Table 1: Properties of different environments. The reward rate col-
umn reports the probabilities that a random policy can receive any
reward signal within the max step (calculated from 10,000 repeated
trails).

most popular formulation of HRL, Options [Sutton et al.,
1999], incorporate a terminate policy into each sub-policy.
Previous options framework either relies on the artificial
prior knowledge for designing options [Precup, 2000] or re-
quires learning regularizers [Bacon et al., 2017; Vezhnevets
et al., 2016]. Other methods [Dayan and Hinton, 1993;
Vezhnevets et al., 2017; Ghazanfari and Taylor, 2017] focus
on how to decompose complicated tasks into subgoals. How-
ever, the prior work is mostly devoted to the single-task set-
ting and assumes the optimal sequence of sub-tasks is fixed
during evaluation [Oh et al., 2017]. In this paper, the multi-
task setting is considered as part of the algorithm to facilitates
learning effective subgoals. Moreover, our evaluation is con-
ditioned on previously unseen tasks, which makes it better to
evaluate the transferability of the well-learned policies.
MTL. Multi-task learning is inspired by the fact that the
knowledge contained in a task can be leveraged by other
tasks [Zhang and Yang, 2017]. In RL, the MTL is often used
as an auxiliary technology to help boost the agent’s perfor-
mance in terms of feature extraction [Jaderberg et al., 2016],
sample efficiency [Brunskill and Li, 2013] and knowledge
transfer [Parisotto et al., 2015]. Besides, the multi-task set-
ting are sometimes used as experimental evaluation [Riemer
et al., 2018]. In this paper, we directly define the multi-task
control optimization as the objective of HRL to learn effec-
tive and transferable subgoals. Our work is closely related
to [Andreas et al., 2017] and [Oh et al., 2017]. However,
they both require some prior knowledge during training, such
as policy sketch (i.e., the number, name, and order of sub-
tasks) [Andreas et al., 2017] and analogy-making (i.e., the
similarities between different sub-tasks) [Oh et al., 2017]. In
contrast, our work requires merely the task coding for the ul-
timate task, which leads to the generality of our method.

5 Experiments
Our experiments consist of three parts2: (i) The compara-
tive experiments with the previous HRL techniques verify our
method’s superiority in multi-task RL problems. (ii) The ab-
lation analyses reveal the importance of various components.
(iii) The visualization results show that the GMHRL does
learn non-trivial, effective and interpretable subgoals. Our ex-
periments are conducted in a set of challenging environments
as follows. Visualization of these environments are shown
in Figure 1, and their properties are reported in Table 1. All
environments are partially observable, that is, the agent can

2Some supplementary details are available in
https://www.dropbox.com/s/nugxeq4u1o0pnf7/appendix.pdf?dl=0.

Flat OC8 OC4 FuNet FuNet-D GMHRL Flat OC8 OC4 FuNet FuNet-D GMHRL Flat OC8 OC4 FuNet FuNet-D GMHRL Flat OC8 OC4 FuNet FuNet-D GMHRL
0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

GoToLocal OpenDoorsOrder PutNextLocal UnlockPickup

Flat OC8 OC4 FuN FuN-D GMHRL

ep
is

od
e

re
w

ar
ds

Figure 3: Performance after convergence compared with baselines. For each environment, we report the average episode rewards and standard
deviation of each method in 100 random evaluate tasks.

millions of frames millions of frames millions of frames millions of frames

ep
is

od
e

re
w

ar
ds

0 20 40 60 80 100
0.1

0.5

0.9

0 20 40 60 80 100
0.0

0.4

0.8

0 20 40 60 80 0 20 40 60 80 100
0.0

0.3

0.6

0.0

0.4

0.8

GMHRLFlat CosReward RawObs NoReachable

GoToLocal OpenDoorsOrder UnlockPickupPutNextLocal

Figure 4: Learning curves of our GMHRL and its variants in the ablation experiment. Each curve has been smoothed.

only observe the grid cells in front of the agent (i.e., a 7 × 7
representation). There are seven available actions: turn left,
turn right, forward, toggle, pickup, drop, done. Besides, the
position of objects and the task switch after each episode.

GoToLocal. The agent is randomly placed in a single room
without any door, where there are various objects of different
colors. In each episode, the agent receives a “go to the [color]
[object]” instruction, such as “go to the red ball”. The instruc-
tion is completed only when the agent is located in the grid
adjacent to the target object and faces the object. This setting
only requires the ability for multi-task without considering
complex sequences of object manipulation.

OpenDoorsOrder. There are four doors in a room. The
agent can open the door and navigate the adjacent room. The
instructions include three forms: “open the [X] door”, “open
the [X] door and then open the [Y] door” and “open the [X]
door after you open the [Y] door”. The agent should open the
specified doors in a specific order.

PutNextLocal. The room setting is similar to GoToLocal,
but the instruction is “put the [color A] [object A] next to the
[color B] [object B]”, such as “put the yellow key next to the
red box”. To complete the instruction, the agent must first go
to the yellow key, take “pickup” action, then go near the red
box, and finally place the yellow key on the grid adjacent to
the red box.

UnlockPickup. The agent is placed in a room with a key
and a locked door, and the door opens onto a room with a box.
The instruction is “pick up the [color] box”. To solve this
task, the agent is required to execute the following sequential
behaviors: go to the key with matching color, take “pickup”
action, go to the door, take “toggle” action, go to the target
box and finally take “pickup” action.

For each environment, we give a positive reward only

when the agent fully completes the task. To encourage
faster completion, the magnitude of the reward value is set to
1− 0.9n/nmax (similar to [Chevalier-Boisvert et al., 2018]),
where n represents the number of steps of a successful
episode, and nmax is the maximum number of steps prede-
fined for each environment.

5.1 Comparative Experiments
With the same evaluation flow, the following HRL methods
are compared with our GMHRL framework. Considering
that these baselines do not support multi-task learning in their
original forms, we modify each for a fairer comparison.
Option-Critic. This method [Bacon et al., 2017] is the first
end-to-end approach for learning options without the need to
provide additional rewards. Through fusing the instruction
and observation in a way similar to our TDN (see Figure 2b),
we extend the original option-critic architecture to the multi-
task setting. As suggested in [Bacon et al., 2017], the option
number is an important super-parameter. Therefore, we test
two baselines with 4 options and 8 options, denoted as OC4
and OC8, respectively.
FeUdal Network (FuN). FeUdal Network [Vezhnevets et
al., 2017] is related to our GMHRL framework and originally
motivated by feudal RL [Dayan and Hinton, 1993]. FuN also
designs a hierarchy of two policies, where the high-level pol-
icy sets the subgoals for the low-level policy in a learned la-
tent embedding space. We replicate the key design of the
original FuN with two critical modifications. (i) We mod-
ify the Precept module in original FuN to support additional
instruction input, which is similar to our option-critic modi-
fication. (ii) Considering the episode length in our evaluate
environment is limited, we use the standard LSTM instead
of the dilated LSTM proposed in [Vezhnevets et al., 2017]
which allows gradient flow through large hops in time.

Envrionment
state

Subgoals
visualization

Agent
episode

"Pick up the blue box"

Instruction

Figure 5: Visualization results on a task in UnlockPickup. The subgoals visualization identify the target state that the TDN expects the agent
to reach after N steps.

FuN-D. The intrinsic reward function used in FuN is set
as the direction cosine similarity. For a fairer comparison, we
also explore the use of the same intrinsic reward function (see
Equation 2) as in our framework.

Flat. This is a variant of our method without a hierarchy of
policy. The PSN is used to directly handle the instruction, and
its optimization is motivated by the external reward instead of
our proposed intrinsic reward.

As shown in Figure 3, our GMHRL framework outperform
these strong baselines in all environments. Although the per-
formances of all algorithms are similar in the simple environ-
ment (i.e., GoToLocal), our approach has an absolute advan-
tage in the more difficult environments, such as PutNextLocal
and UnlockPickup. This result not only verifies the superior-
ity of GMHRL in multi-task RL problems but also indicates
that effective subgoals are more helpful in the complicated
tasks which require sequential object manipulation.

5.2 Ablation Analyses
In our ablation experiment, our proposed method is compared
to the following variants, as well as Flat.
CosReward. This variant uses the direction cosine similar-
ity reward as the PSN’s intrinsic reward function as suggested
in [Vezhnevets et al., 2017]. Concretely, the form of intrinsic
reward is cos(st+1 − st, gt).

NoReachable. This variant uses the conventional training
method without our proposed reachable subgoal training to
update the parameters.

RawObs. This variant defines the subgoal and state in the
raw observation space, as suggested in [Nachum et al., 2018].
Intuitively, since the observations of the agent are pixel im-
age, the distance between pixels cannot measure the relation-
ship between states, which makes it difficult to obtain effec-
tive subgoals.

Figure 4 reports our ablation results. All variants make
almost no progress in UnlockPickup. Concretely, although
Flat has achieved comparable performance in GoToLocal and
OpenDoorsOrder, it struggles in more complicated environ-
ments, which confirms the role of HRL. CosReward has a
high learning efficiency in the initial stage of training but
achieves limited performance, which might indicate that the
direction similarity reward cannot generalize to our frame-
work. By comparing NoReachable and GMHRL, the reach-
able subgoal training method is demonstrated to be able to
speed up the learning significantly, thereby leading to better

results. Besides, RawObs performs worst as it cannot scale to
the problems with pixel image input.

5.3 Visualization Result
In addition to evaluating the overall performance in multi-
ple tasks, we also design a visualization experiment for our
well-learned GMHRL model. Considering that there are few
feasible actions in our environment setting, we can obtain all
possible observations and states of the agent after N steps by
exhaustive search. When t = 0, N, 2N, · · · , the TDN outputs
the subgoal gt according to current state st. We denote the
the possible state and the possible observation after N steps
as sNt,i and oNt,i, respectively, where i = 1, 2, . . . ,M and M
is the number of possible states. By maximizing the intrinsic
reward function as follow3,

j = arg max
i
rL(st, at, s

N
t,i, gt), (5)

we can identify the target state sNt,j as the subgoal that the
TDN expects the PSN to achieve, and the corresponding ob-
servation oNt,j gives the visualization. Figure 5 reports the
visualization result on a task in UnlockPickup, which shows
that our GMHRL does learn non-trivial, effective and inter-
pretable subgoals.

6 Discussion
Establishing meaningful hierarchical policies may be an im-
portant stepping stone to human-like intelligence, and the key
is how to obtain effective subgoals. This paper introduces a
novel perspective for HRL, i.e., incorporating multi-task op-
timization into the HRL framework. Moreover, we propose
a solution, GMHRL, which can automatically learn effective
subgoals from multiple related tasks. However, the key of the
advantage of MTL is the relevance between tasks, which is
satisfied here by sharing the same state transition function.
Future work might focus quantifying the task relevance and
theoretically study its relationship with HRL.

7 Acknowledgements
This work is supported in part by the National Natural Sci-
ence Foundation of China under Grant 61671266, 61327902,
in part by Tsinghua University Initiative Scientific Research
Program under Grant 20161080084, and in part by National

3In practice, we consider one-step margin, i.e., sN−1
t,i and sN+1

t,i
are also considered.

High-tech Research and Development Plan under Grant
2015AA042306.

References
[Andreas et al., 2017] Jacob Andreas, Dan Klein, and

Sergey Levine. Modular multitask reinforcement learn-
ing with policy sketches. In International Conference on
Machine Learning, pages 166–175, 2017.

[Bacon et al., 2017] Pierre-Luc Bacon, Jean Harb, and
Doina Precup. The option-critic architecture. In AAAI
Conference on Artificial Intelligence, pages 1726–1734,
2017.

[Barto and Mahadevan, 2003] Andrew G. Barto and Sridhar
Mahadevan. Recent advances in hierarchical reinforce-
ment learning. Discrete event dynamic systems, 2003.

[Brunskill and Li, 2013] Emma Brunskill and Lihong Li.
Sample complexity of multi-task reinforcement learning.
In Conference on Uncertainty in Artificial Intelligence,
pages 122–131, 2013.

[Chaplot et al., 2018] Devendra Singh Chaplot, Kan-
thashree Mysore Sathyendra, Rama Kumar Pasumarthi,
Dheeraj Rajagopal, and Ruslan Salakhutdinov. Gated-
attention architectures for task-oriented language ground-
ing. In AAAI Conference on Artificial Intelligence, pages
2819–2826, 2018.

[Chevalier-Boisvert et al., 2018] Maxime Chevalier-
Boisvert, Dzmitry Bahdanau, Salem Lahlou, Lucas
Willems, Chitwan Saharia, Thien Huu Nguyen, and
Yoshua Bengio. Babyai: First steps towards grounded
language learning with a human in the loop. arXiv
preprint arXiv:1810.08272, 2018.

[Dayan and Hinton, 1993] Peter Dayan and Geoffrey E. Hin-
ton. Feudal reinforcement learning. In Advances in neural
information processing systems, pages 271–278, 1993.

[Ghazanfari and Taylor, 2017] Behzad Ghazanfari and
Matthew E Taylor. Autonomous extracting a hierarchical
structure of tasks in reinforcement learning and multi-task
reinforcement learning. arXiv preprint arXiv:1709.04579,
2017.

[Hochreiter and Schmidhuber, 1997] Sepp Hochreiter and
Jürgen Schmidhuber. Long short-term memory. Neural
computation, pages 1735–1780, 1997.

[Jaderberg et al., 2016] Max Jaderberg, Volodymyr Mnih,
Wojciech Marian Czarnecki, Tom Schaul, Joel Z Leibo,
David Silver, and Koray Kavukcuoglu. Reinforcement
learning with unsupervised auxiliary tasks. arXiv preprint
arXiv:1611.05397, 2016.

[Lillicrap et al., 2015] Timothy P Lillicrap, Jonathan J Hunt,
Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous con-
trol with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

[McGovern and Barto, 2001] Amy McGovern and An-
drew G Barto. Automatic discovery of subgoals in
reinforcement learning using diverse density. In Interna-
tional Conference on Machine Learning, 2001.

[Mnih et al., 2016] Volodymyr Mnih, Adria Puigdomenech
Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asyn-
chronous methods for deep reinforcement learning. In In-
ternational conference on machine learning, pages 1928–
1937, 2016.

[Nachum et al., 2018] Ofir Nachum, Shixiang Shane Gu,
Honglak Lee, and Sergey Levine. Data-efficient hierar-
chical reinforcement learning. In Advances in Neural In-
formation Processing Systems, pages 3307–3317. 2018.

[Oh et al., 2017] Junhyuk Oh, Satinder Singh, Honglak Lee,
and Pushmeet Kohli. Zero-shot task generalization with
multi-task deep reinforcement learning. In International
Conference on Machine Learning, 2017.

[Parisotto et al., 2015] Emilio Parisotto, Jimmy Lei Ba, and
Ruslan Salakhutdinov. Actor-mimic: Deep multitask
and transfer reinforcement learning. arXiv preprint
arXiv:1511.06342, 2015.

[Parr and Russell, 1998] Ronald Parr and Stuart J Russell.
Reinforcement learning with hierarchies of machines.
In Advances in Neural Information Processing Systems,
pages 1043–1049, 1998.

[Precup, 2000] Doina Precup. Temporal abstraction in rein-
forcement learning. University of Massachusetts Amherst,
2000.

[Riemer et al., 2018] Matthew Riemer, Miao Liu, and Ger-
ald Tesauro. Learning abstract options. In S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett, editors, Advances in Neural Information
Processing Systems 31. Curran Associates, Inc., 2018.

[Schaul et al., 2015] Tom Schaul, Daniel Horgan, Karol
Gregor, and David Silver. Universal value function ap-
proximators. In International Conference on Machine
Learning, pages 1312–1320, 2015.

[Stolle and Precup, 2002] Martin Stolle and Doina Precup.
Learning options in reinforcement learning. In Interna-
tional Symposium on Abstraction, Reformulation and Ap-
proximation, pages 212–223, 2002.

[Sutton et al., 1999] Richard S Sutton, Doina Precup, and
Satinder Singh. Between mdps and semi-mdps: A frame-
work for temporal abstraction in reinforcement learning.
Artificial intelligence, 112(1-2):181–211, 1999.

[Vezhnevets et al., 2016] Alexander Vezhnevets, Volodymyr
Mnih, Simon Osindero, Alex Graves, Oriol Vinyals, John
Agapiou, et al. Strategic attentive writer for learning
macro-actions. In Advances in Neural Information Pro-
cessing Systems, pages 3486–3494, 2016.

[Vezhnevets et al., 2017] Alexander Sasha Vezhnevets, Si-
mon Osindero, Tom Schaul, Nicolas Heess, Max Jader-
berg, David Silver, and Koray Kavukcuoglu. Feudal net-
works for hierarchical reinforcement learning. In Interna-
tional Conference on Machine Learning, 2017.

[Zhang and Yang, 2017] Yu Zhang and Qiang Yang.
A survey on multi-task learning. arXiv preprint
arXiv:1707.08114, 2017.

	Introduction
	Multi-task Optimization
	GMHRL Framework
	Main Design
	Reward Settings
	Learning
	Reachable Subgoal Training
	Network Detail

	Related Work
	Experiments
	Comparative Experiments
	Ablation Analyses
	Visualization Result

	Discussion
	Acknowledgements

