
Reinforcement Learning for Large and Variable Scale Problems using
Improvement Based Rewards

Abhik Ray , Richa Verma∗ and Harshad Khadilkar
TCS Research

{ray.abhik, richa.verma4, harshad.khadilkar}@tcs.com,

Abstract
We analyze the convergence properties and poten-
tial advantages of an improvement based reward
function. The proposed approach masks the ac-
tual rewards generated by the environment from the
agent, instead providing a fixed positive reward for
continuous improvement over past reward values
and negative reward for failing to do so. The key
advantage of this approach is to make the learned
values or policies (as applicable) independent of the
actual scale or complexity of the problem, allow-
ing us to transfer learning across a wide range of
small and large scale instances of the same problem
with minimal re-learning. We follow a theoretical
treatment of the approach with tests on benchmark
problems, and also cite cases where it has been suc-
cessfully used on real-world, large scale problems.

1 Introduction
A majority of reinforcement learning (RL) studies in liter-
ature focus on gameplay [Mnih et al., 2015; Van Hasselt
et al., 2016]. The scale of such problems, measured in
terms of size of the state space, can be very large. Conse-
quently, most studies report results using significant hardware
resources and training time [Mnih et al., 2016; Silver et al.,
2017]. There is also a growing body of literature on applica-
tions in operations research [Gambardella and Dorigo, 1995;
Zhang and Dietterich, 1995], robotics [Gu et al., 2017], and
networked systems [O’Neill et al., 2010]. The challenge of
scaling of the instance sizes in such problems is just as acute;
however, there is sometimes the added complexity of limited
hardware availability. Furthermore, there is a unique chal-
lenge in such problems, which is that of variable scale. We
refer to problems such as job shop scheduling [Zhang and Di-
etterich, 1995], where the number of jobs and machines may
vary from one instance to another. Were an RL algorithm to
be deployed to solve such problems in real-time, it would not
only need to be scalable, but in a sense also scale-free.

One approach to generalising learning across instances of
variable scale within the same class of problems, is to mask
the actual reward function. We describe a threshold-based

∗Contact Author

reward for RL algorithms, which provides positive reward
when the agent improves on its own past performance, and
negative reward otherwise. This reward mechanism can be
used in conjunction with any standard RL algorithm (value or
policy based) without additional changes.

We have used this approach in practical applications, in-
cluding railway scheduling [Khadilkar, 2019] and container
loading for ships [Verma et al., 2019]. The railway schedul-
ing problem solves instances with 450 trains passing through
50 stations, while the container loading problem solves in-
stances with 1500 slots on a ship, to be filled from a pool
of 100,000 containers in the yard. In both cases, a constant
sized state and action space was devised in addition to the
threshold based reward. This allowed us to reuse the models
on instances of different scale, for example across different
railway networks or across ships with different container ca-
pacities. The true optimal reward varied from one problem
instance to another, but the threshold based reward could dis-
tinguish between good and bad outcomes.

In this paper, the reward function is analysed from the per-
spective of convergence, and we prove that this is guaranteed
for a general RL algorithm as long as the original algorithm
(for example, Q-Learning) is guaranteed to converge to the
optimal value or policy. As far as we are aware, this is the
first theoretical proof of convergence of this type of method
to an optimal policy as the algorithm without the tweaked re-
ward. We perform empirical tests on the multi-armed bandit
problem as well as the sequential decision-making environ-
ment ‘Gridworld’. The development of the proof in Section
3 focuses on Q-Learning for illustration, but the same logical
steps can be applied to any standard RL algorithm.

2 Description of methodology
Consider an episodic Markov Decision Process (MDP) spec-
ified by the standard tuple < S,A,R, P >, where S is the
state space, A is the action space, R is the set of possible
rewards, and P is the transition function. We assume the
existence of a reinforcement learning algorithm for learning
the optimal mapping S → A. For illustration, we will as-
sume that the algorithm to be used is Q-Learning [Sutton and
Barto, 2018]. Typically, the reward structure is a natural con-
sequence of the problem from which the MDP was derived.
For example, in the popular environment Gridworld, the task
is to navigate through a 2-D grid towards a goal state. The



most common reward structure in this problem is to provide
a small negative step reward for every action that does not
end in the goal state, and a large positive terminal reward for
reaching the goal state. It follows that the value of optimal
reward depends on both the values of the step and terminal
rewards, as well as on the size of the grid. In this paper, we
replace the rewardsR completely by a threshold based binary
episodic reward structure rt : S,A,S → IR:

rt(sk, ak, sk+1) =


+zp, sk+1 ∈ T & Gt ≥ ρt
−zn, sk+1 ∈ T & Gt < ρt
0, otherwise

where k is the step within an episode, t is the number of the
episode, T is the set of terminal states, Gt is the return for
episode t, ρt is the performance threshold at episode t, zp and
zn are the magnitudes of the positive and negative terminal
rewards respectively. Note that the return Gt is based on the
original reward structure of the MDP. If the original step re-
ward at k is Rk, then Gt =

∑T
k=0Rk. The net effect of the

reward structure is to provide a positive terminal reward zp if
Gt ≥ ρt. The threshold itself is updated using the relation,

ρt+1 =

{
ρt + βt(

∑t
x=1Gx

t − ρt) if q-values converged
ρt otherwise

,

where βt ∈ (0, 1) is the step size and is assumed to be exter-
nally defined according to a fixed schedule.

Training process: We assume that the q-values must con-
verge for every value of the threshold before its own value
is updated. The threshold updates and q-value updates thus
happen alternately. If the initial threshold value is very low,
it is fairly easy for the algorithm to achieve positive terminal
reward, and a large proportion of state-action pairs converge
to positive q-values. During the next threshold update, the
high average returns Gx since the last update result in an in-
crease in value of ρt. The threshold thus acts as a lagging
performance measure of the algorithm over the training his-
tory. Practically, we find in Section 4 that we can afford to
update the threshold after every episode instead of waiting
for the q-values to converge every time. The algorithm is
said to have converged when both the threshold and the q-
values converge. A schematic of the procedure is shown in
Figure 1. The original rewards R only affect the returns G,
which in turn are used to update the threshold ρ. At the end of
each episode, the current return and threshold values are used
to compute the new rewards r, which implicitly or explicitly
drive the policy π.

G

R

π

r

ρ

sum

action update

update

Figure 1: Training process at a fixed t

3 Convergence
At time step t, we can use any reinforcement learning algo-
rithm proven to converge to an optimal policy (or even much
milder conditions as shown in section 2.2) and let it converge
for the new reward structure r with threshold ρt. For exam-
ple, with Q-Learning it is known that Q values converge to
Q∗ under certain (mild) conditions [Jaakkola et al., 1994].

3.1 Proof
Let ρ∗ = Eπ∗ [G] = V ∗(s0) be the maximum expected return
from the start state for the original reward structure.

Case 1: E[ρt] < ρ∗

There exists a policy for which E[G] = ρ∗, therefore there
exist policy for which E[Gt] > E[ρt]. If we let the RL algo-
rithm converge, E[Gt] > E[ρt]

ρt+1 = ρt + βt(Gt − ρt)
E[ρt+1] = E[ρt] + βtE[Gt − ρt]
E[ρt+1] > E[ρt] (1)

{Since βt > 0 and E[Gt] > E[ρt]}

ρt+1 = (1− βt)ρt + βtGt

E[ρt+1] = (1− βt)E[ρt] + βtE[Gt]
< (1− βt)ρ∗ + βtρ

∗

E[ρt+1] < ρ∗ (2)

{Since ρ∗ ≥ E[Gt] by definition}

From (3) and (4):

E[ρt] < E[ρt+1] < ρ∗ (3)

Case 2: E[ρt] > ρ∗

There exists no policy for which E[Gt] ≥ E[ρt] since by def-
inition of ρ∗, it is the maximum expected return. If we let the
RL algorithm converge, E[Gt] < E[ρt]

ρt+1 = ρt + βt(Gt − ρt)
E[ρt+1] = E[ρt] + E[βt(Gt − ρt)]
E[ρt+1] < E[ρt] (4)

{Since βt > 0 and E[Gt] < E[ρt]}

Case 3: E[ρt] = ρ∗

There exists a policy for which E[G] = ρ∗, therefore for the
same policy E[Gt] = E[ρt] = ρ∗. If we let the RL algorithm
converge, E[Gt] = E[ρt]

ρt+1 = ρt + βt(Gt − ρt)
E[ρt+1] = E[ρt] + E[βt(Gt − ρt)]
E[ρt+1] = E[ρt] = ρ∗ (5)

{Since E[Gt − ρt] = 0}



Hence proved,

E[ρt] < ρ∗ =⇒ E[ρt] < E[ρt+1] < ρ∗

E[ρt] > ρ∗ =⇒ E[ρt+1] < E[ρt]
E[ρt] = ρ∗ =⇒ E[ρt+1] = E[ρt] = ρ∗

Therefore ρ → ρ∗ and the optimal policy for the new re-
ward structure when ρ = ρ∗ is an optimal policy for the orig-
inal MDP since the definition of optimal policy is one that
attains maximum expected reward.

3.2 Notes on the proof
• Convergence to optimal policy is not required after each

threshold update. Should just be sufficient for:

E[Gt] > E[ρt] for E[ρt] < ρ∗

E[Gt] < E[ρt] for E[ρt] > ρ∗

E[Gt] = E[ρt] for E[ρt] = ρ∗

Which is practically not difficult for any RL algorithm
as the following note shows.
• At time step t, let the threshold and the policy be such

that E[Gt] > E[ρt]. The change in threshold is just
βt(Gt−ρt), so it should not take many episodes of train-
ing to get a policy that achieves E[Gt+1] ≥ E[ρt+1].
Practically updating threshold after every episode also
works.
• Step in the direction of optimality for the new reward

structure rt is a step in the direction of optimality for the
original reward structureR.

4 Results
4.1 Multi-Armed Bandit
The 10-armed Testbed [Sutton and Barto, 2018] was used to
test the convergence of ε-Greedy, Softmax and UCB with the
threshold based reward. The experiments show that the av-
erage reward and the percentage of times optimal action is
taken for the threshold based reward structure are the same as
that of the original reward structure on average across a range
of parameters, as well as the best parameters found after a
grid search. The number of training steps taken to converge
to the optimal value is also the same on average. The metric
used for the average reward obtained after convergence is the
average reward of the last 100 steps out of the 2000 training
steps. The metric used to test the time take to converge is the
average rewards of all the 2000 training steps.
Figure 2 shows a run comparing the original reward structure
with threshold based reward structure using epsilon-greedy
(ε = 1 and ε-decay = 0.995) with zp = 1 and zn = 1. The
threshold is updated after every episode (and not waiting for
convergence after every threshold update).

4.2 Gridworld
A variable size Gridworld environment was set up with a vari-
able reward structure with a negative step reward, a positive
reward for reaching the gold, and a negative reward for reach-
ing a state with a bomb. The initial position, the gold position

and bomb position are all randomly set. An episode termi-
nates after reaching the gold, bomb or after 100 steps. The
experiments show that the threshold based reward structure
converges to the same average reward as the original one on
average across various agent and environment parameters and
the best agent parameters found using a grid search. Again,
the convergence rate is also the same on average. The metric
used for the average reward obtained after convergence is the
average reward of the last 100 steps out of the 2000 training
steps. The metric used to test the time take to converge is the
average rewards of all the 2000 training steps.

Figure 3 shows a run for a 15x15 Gridworld with the ini-
tial position as (0,0), the bomb placed at (7,7) and the gold
placed at (14,14). γ = 0.9, ε = 1, ε-decay = 0.995, zp = 1,
zn = 1, learning rate for the original reward structure is 0.2
and the learning rate for the threshold based q-values as well
as the threshold update is 0.05. success−ratio = 0.9 which
means that instead of the return having to be greater than or
equal to the threshold every time, it is sufficient to do better
than 0.9 of the current threshold value to get a positive re-
ward. Initially there is a −0.01 penalty for every step, a −1
penalty for reaching the bomb and a +1 reward for reach-
ing the gold. At step 1000, this reward structure is changed
(while maintaining the q-values) to a−0.08 penalty for every
step, a −5 penalty for reaching the bomb and a +10 reward
for reaching the gold. One of the potential advantages of the
threshold based reward structure is that it adjusts to the non
linearly re-scaled rewards quickly and smoothly. The intu-
ition behind it is that it is able to distinguish between good
and bad decisions and outcomes in a scale invariant way.

Further in our research, we plan to test the potential ad-
vantages of using a threshold-based reward, in terms of sta-
bility and performance for additional RL algorithms (espe-
cially recent advances such as DDPG, TRPO, and PPO). We
also want to use the technique along with curriculum learning
[Yoshua Bengio, 2009] especially in partially observed envi-
ronments where the state and action space size remains the
same (local) but the environment complexity (scale, observ-
ability, stochasticity, non-linearity) is scaled up. We would
also like to explore the effect of parameters such as zp and
zn, the value and schedules for βt, the number of episodes per
threshold update, the value and schedules for success−ratio,
and the initial value of the threshold (and optimistic starts).
Finally, there remains the possibility of including interme-
diate rewards and non-episodic MDPs within the threshold-
based setup.

References
[Gambardella and Dorigo, 1995] Luca M Gambardella and

Marco Dorigo. Ant-q: A reinforcement learning approach
to the traveling salesman problem. In Machine Learning
Proceedings 1995, pages 252–260. Elsevier, 1995.

[Gu et al., 2017] Shixiang Gu, Ethan Holly, Timothy Lilli-
crap, and Sergey Levine. Deep reinforcement learning
for robotic manipulation with asynchronous off-policy up-
dates. In 2017 IEEE international conference on robotics
and automation (ICRA), pages 3389–3396. IEEE, 2017.



0 500 1000 1500 2000
Steps

0.0

0.5

1.0

1.5
Av
er
ag
e 
R
ew
ar
d

with original reward structure
with threshold based reward structure
value of threshold

0 500 1000 1500 2000
Steps

0

20

40

60

80

100

%
 O
pt
im
al
 A
ct
io
n

with original reward structure
with threshold based reward structure

Figure 2: 10-armed Testbed [Sutton and Barto, 2018] using epsilon-greedy.

0 250 500 750 1000 1250 1500 1750 2000
Steps

−5

0

5

Av
er

ag
e 

R
ew

ar
d

with original reward structure
with threshold based reward structure
value of threshold

Figure 3: 15x15 Gridworld with rewards scaled non-linearly at step 1000. Using Q-Table with epsilon-greedy.

[Jaakkola et al., 1994] Tommi Jaakkola, Michael Jordan,
and Satinder Singh. On the convergence of stochastic iter-
ative dynamic programming algorithms. Neural Compu-
tation, 6:1185–1201, 11 1994.

[Khadilkar, 2019] Harshad Khadilkar. A scalable RL algo-
rithm for scheduling railway lines. IEEE Transactions on
Intelligent Transportation Systems, 20(2):727–736, 2019.

[Mnih et al., 2015] Volodymyr Mnih, Koray Kavukcuoglu,
David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidje-
land, Georg Ostrovski, et al. Human-level control through
deep RL. Nature, 518(7540):529, 2015.

[Mnih et al., 2016] Volodymyr Mnih, Adria Puigdomenech
Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asyn-
chronous methods for deep RL. In International confer-
ence on machine learning, pages 1928–1937, 2016.

[O’Neill et al., 2010] Daniel O’Neill, Marco Levorato, An-
drea Goldsmith, and Urbashi Mitra. Residential demand
response using RL. In IEEE International Conference on
Smart Grid Communications, pages 409–414. IEEE, 2010.

[Silver et al., 2017] David Silver, Julian Schrittwieser,
Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur

Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian
Bolton, et al. Mastering the game of go without human
knowledge. Nature, 550(7676):354, 2017.

[Sutton and Barto, 2018] Richard S. Sutton and Andrew G.
Barto. Introduction to Reinforcement Learning. MIT
Press, Cambridge, MA, USA, 2nd edition, 2018.

[Van Hasselt et al., 2016] Hado Van Hasselt, Arthur Guez,
and David Silver. Deep RL with double q-learning. In
AAAI, volume 2, page 5. Phoenix, AZ, 2016.

[Verma et al., 2019] Richa Verma, Sarmimala Saikia, Har-
shad Khadilkar, Puneet Agarwal, Ashwin Srinivasan, and
Gautam Shroff. An RL framework for container selection
and ship load sequencing in ports. In International conf.
on autonomous agents and multi agent systems, 2019.

[Yoshua Bengio, 2009] Ronan Collobert Ronan Collobert
Yoshua Bengio, Jérôme Louradour. Curriculum learning.
In ICML ’09 Proceedings of the 26th Annual International
Conference on Machine Learning, pages 41–48, 2009.

[Zhang and Dietterich, 1995] Wei Zhang and Thomas G Di-
etterich. An RL approach to job-shop scheduling. In IJ-
CAI, volume 95, pages 1114–1120. Citeseer, 1995.


