Case-based Policy Inference for Transfer in
Reinforcement Learning

Ruben Glatt, Felipe Leno da Silva, and Anna Helena Reali Costa

Escola Politécnica da Universidade de Sao Paulo, Brazil
{ruben.glatt, f.leno, anna.reali}@usp.br

Abstract. This paper introduces a formulation for applying the Case-
Based Reasoning methodology to knowledge transfer with Reinforcement
Learning agents. Based on this framework, we propose the Case-based
Policy Inference (CBPI) algorithm to accelerate learning by selecting
similar cases from a library of previously learned tasks with their respec-
tive solutions to solve a new target task. CBPI guides the training by
dynamically selecting and blending policies according to their usefulness
for the current target task, progressively switching the control to the
new policy as it converges to the optimal behavior. In our experiments,
we show the benefits of our algorithm with regards to sample efficiency
and performance when compared to vanilla Q-Learning and Probabilis-
tic Policy Reuse in a grid world domain. Apart from converging faster,
CBPI can also effectively learn core policies of a given domain and shows
to be robust against negative transfer.

Keywords: Reinforcement Learning - Case-based Reasoning - Transfer Learn-
ing - Policy Reuse

1 Introduction

A great part of Artificial Intelligence (AI) research is concerned with learning
how to solve a given task in a most efficient way. In the past, most research
efforts have been focused on learning individual tasks from scratch. One way,
such tasks can be modeled is as a Markov Decision Process (MDP) [18], which
is a discrete time stochastic control process. At each time step, an MDP is in
a state and an agent can perform actions that lead to an update of the state
combined with a reward signal.

Many very powerful methods for solving this kind of decision-making pro-
cesses are specified in the field of Reinforcement Learning (RL) [24]. In RL, an
agent explores the space of possible strategies to solve a task in a given envi-
ronment, receives a feedback (reward) on the outcome of the actions it takes
and deduces a behavior policy from its observations over time. The goal of the
agent is to determine a policy m that maps each state s to an action a, which
maximizes the accumulated reward R over a given horizon. But, although RL
has been successfully used to autonomously learn how to solve complex tasks,

like classic board games [26] or robot soccer [23], learning to solve a new task
with good results still takes a relative long time. This is due to the fact that
agents applying RL techniques require a large number of samples of interactions
with the environment to infer an effective solution policy even for simple tasks.
However, with the increasing success in the area (e.g. autonomous helicopter
flight [16] or Atari computer games [15]), the focus has shifted to more complex
agents that can learn to solve not only one, but multiple tasks with the help of
using a priori gathered knowledge in order to progressively reduce the sample
complexity.

The field of Transfer Learning (TL) emerged from the need to solve these
kind of problems and in recent years many efforts have been directed on expand-
ing Machine Learning (ML) algorithms with the ability to transfer knowledge,
experience or skills to allow learning of multiple tasks more efficiently [17]. The
idea of using accumulated knowledge in this way is inspired by the human trans-
fer learning abilities which work quite similar. The goal is to create intelligent
agents that can learn to master varied tasks in a single or various domains by
engaging in continuous or even lifelong learning [27]. An overview of approaches
that reuse knowledge from previously learned tasks utilizing RL approaches is
given by Taylor & Stone [25], but the interest is still growing and new interest-
ing concepts are emerging frequently, as for example transferring knowledge in
the form of options [12], by transferring artificial neural network weights [8] or
through advice from other agents [21].

Another important concept to benefit from previously acquired knowledge
is described in the Case-based Reasoning (CBR) approach [1], which describes
a methodology to build computational models to reuse existing knowledge in a
general manner [30]. The guiding assumption for CBR is that similar problems
have similar solutions. CBR has been shown to be very successful and has been
widely applied in a number of fields [5]. A high-level description of the CBR cycle
describes four stages during the learning of a new task with previously acquired
knowledge [1,11]. First, the agent has to RETRIEVE the most similar cases
from its knowledge base and then REUSE the contained information to propose
a solution to the new task. After that, the proposed solution is REVISED to
find a final solution to the target task. In the end, the agent can decide if it
should RETAIN the gathered solution in the knowledge base.

Previous works in RL have applied similar methodologies as CBR, often
without making a direct connection. One example of this is the instance-based
learning approach from McCallum [14], where a memory of exploration traces is
stored to overcome the state aliasing issues. Another one is Kuhlmann and Stone
[13], who introduce a graph-based method for identifying previously encountered
games to automate domain mapping for value function transfer.

In this paper, we are applying the CBR methodology to a decision mak-
ing problem that can be solved through RL methods. We describe a general
framework and introduce a concrete implementation termed Case-based Policy
Inference (CBPI) to learn solutions for a given targt task. The training in our
framework is guided by the II-Inference algorithm that we propose here. The

validity of the approach is shown in an experimental evaluation, where we com-
pare our approach with regular @Q-Learning [29] and Probabilistic Policy Reuse
(PPR) [6] in a simple robot navigation domain. We show the general superior-
ity over those algorithms specifically with regard to increased performance and
efficiency of CBPI under certain conditions.

The remainder of this paper is organized as follows: Section 2 describes our
interpretation of a general CBR framework. In Section 3, we propose the CBPI
approach, followed by Section 4, where we report the conducted experiments and
analyse the outcome. Section 5 then compares our approach to related works,
and, finally, Section 6 concludes the paper and points towards further directions.

2 Case-Based Reasoning in Reinforcement Learning
terminology

In this section we describe the CBR framework in RL terminology. As is common
for sub-fields of a research area, CBR has evolved its own terminology and per-
spectives, making it less tangible for other communities. Therefore, we attempt
to provide a formulation that defines the CBR framework using RL terminology
with the goal of making it more accessible for the RL community and making
RL more attractive to the CBR community.

In CBR terminology, a case describes a problem and its solution. A case base
is comprised of a number of retained cases, which have been learned in the past
and whose solutions can be reused to solve future problems.

In RL, a case contains the task (problem), defined by an MDP, and a policy
associated with that task (solution) and can be described as

V= <.qu,71'_o19>, (1)

where ¥ stands for the case, {2y represents the task, and 7, represents a policy,
that should ideally be an optimal solution for (2.
A case base can be defined as a library in RL and formally described as

L:= {79071917--~719n}7 (2)

where the ¢; stand for individual cases that have successfully been solved and
added to the library. Each of those cases is ideally distinct from each other to
avoid duplicate information.

The cyclic process in CBR integrates solving a new task and learning from
experience while building a case base over time. Here, we are providing a general
view on applying the CBR cycle to RL. A visualization of this process is sketched
out in Figure 1. We are leaving the definitions intentionally wide so that adap-
tions to other variants are possible, as for example by Aha [2], who introduces an
additional REVIEW step between REVISE and RETAIN, or by Hiillermeier [9]
who also describes a framework but focuses on the RETAIN stage and proposes
to build a credible set that contains some (possibly all) solutions for a given
problem.

Problem

gn—? RETRIEVE | Similar
e ﬂutlons

y

New - l T Train
case ",
9 y,

)

Accepted
solution

Suggested
solution

Revised

Proposed
Policy

T -

Po,\ icy
T — l T

Confirmed
solution REVISE

Fig. 1. A view on the CBR cycle adapted to RL terminology.

RETRIEVE. For every new target task {2 that an agent wants to learn, it
analyses the existing knowledge in the library £ because it is not necessarily
beneficial to use the whole library £ when learning a new task. Therefore, only
the cases with the most similar tasks should be selected from £ according to a
similarity function

SiMitask = §2 X 2 —[0,1] (3)

to build a more confined subset Liyqin € L.
The function that builds the training library can be described as

Lirain +— RETRIEVE(L, (2), (4)
and formalized as
Etrain <~ {19|’l9 € £ and Simtask:<gy 919) > o-taslc}v (5)

where 04,55 defines a threshold factor for controlling the size of the library.

REUSE. In this stage, the training library is used to support the exploration of
possible solutions to suggest a solution that helps to solve the task. The training
here is guided by a strategy that is built on the policies of the retrieved similar
cases in the training library Liyqin.

It might be necessary to adapt a form of mapping for each case if the state-
and/or action-space is different than in the target task. The resulting policy is
found by continuously iterating between using the already learned policies and

exploring the current target policy. The function that returns this policy and
defines the used strategy can be described as

7o < REUSE(Lirain, 22). (6)

The proposed solution for the target task 2, a policy mg, then defines the be-
haviour of the agent.

REVISE. Although some of the cases in the library may contain very similar
tasks, none of them are expected to be exactly equal to the new target task.
For this reason, selecting one (or multiple) policies to guide the training is a
good way to get to reasonable solutions fast, but needs to be followed by further
training to verify, and if possible improve, the suggested solution. At this stage,
the policy is refined using either a new strategy or by following the same strategy
as in the REUSE stage adapted to a single solution (policy). The function that
returns the revised solution 7727 which in the best case is optimal, is described as

T« REVISE(Q2, 7). (7)

In RL, often the REUSE and REVISE steps might be integrated in the same
function, gradually switching the guiding policy from past experiences to the
new policy.

RETAIN. When the training for the new task ends (whether by finding the
optimal policy or by meeting a termination condition), it must be decided if the
task {2 with the solution 7, should be added as a new case to £. This is achieved

by comparing 7r/9 with the existing solutions from the other cases in the library.
The comparison is performed using a policy similarity function

SiMsolution : I x I — [0, 1]. (8)

The new case ¥ enters the library £ only if it returns a value smaller than a
threshold factor osoution for all policies. This can be described as

L« RETAIN(L,(2,7p)), ()
and formalized as

(10)

L «— ‘C U <“Qa 7Ti(2> if Vo € £ : Simsolution (7T_Q7 7TQ,9) S O solution
L otherwise '

Algorithm. The whole CBR cycle for RL can then be described using the
definitions above as shown in Algorithm 1.

Algorithm 1 CBR cycle for RL
1: function CBRRL(L, 2)

2: Lirain < RETRIEVE(L, 2)
3: 70 < REUSE(Ltrain, 2)

41 7y REVISE(R,7¢)

5. L+ RETAIN(L,(02,75))

3 Case-based Policy Inference (CBPI)

We propose an implementation of the framework described in Section 2 and
coin it Case-based Policy Inference (CBPI). As we are using Q-Learning to find
a solution, the policy for the new task is based on a @-table and defined as

Vs € S :mo(s) = argmaxQq(s, a). (11)
a€A
CBPI is based on the idea of creating a generalization of past policies during
training and focuses on the REUSE and REVISE stages of the CBR cycle and
is described in Algorithm 2. It should not be confused with the term Case-based
Inference (CBI), which aims at predicting the right solution for a new target
task including assertions about the confidence of those predictions [9].

Algorithm 2 Case-based Policy Inference

1: function CBPI(L, 2, Tpolicy, ATpolicys Taction, A€, maxSize, Otask, Tsolution)
2: Init m7o: Qo =0,Vs € S,a € A (Eq.(11))

3: Init Litrain ¢ RETRIEVE(L, (2,70), maxSize, Otqsk)

4: Init € (Eq. (12))

5. Set Ppoticy(.) < POLICY_EVAL(Ltrain, Tpolicy)

6: for each training episode k = 1 to K do

T for each step h =1 to H do

8: Observe state s

9: Select a « II-Inference(s, Lirain, Ppoticy(-); Taction, €)
10: Perform a

11: Observe reward R and follow-up state s’

12: Update Qq(s,a) < Qn(s,a) + a[R + ymax, Qa(s’,a) — Qa(s,a)]
13: if goal state reached then end for
14: if k is evaluation episode and |L¢rain| > 1 then
15: Update Tpoticy < Tpoticy + ATpolicy
16: Set Ppoticy(.) ¢~ POLICY_EVAL(Ltrain, Tpolicy)
17: Update € < € — Ae

18: Update £ < RETAIN(L, (2,70), Csotution)

Algorithm 2 requires a policy library £, that may be empty, a target task {2, a
temperature factor 7,01i¢y for the policy importance, its increment value Atpopicy,

a temperature factor T,et0n for the action probabilities, the decrement value Ae
for the exploration factor €, the maximum training-library size maxzSize, and the
thresholds o4k and o sorution t0 define similarities between tasks and solutions
respectively.

It starts by initializing the @Q-table for the policy 7. It then selects cases
for the training library Lqin from all available cases as described in Algorithm
3. The RETRIEVE function takes as input the library £, the target task (2,
the initialized solution 7, and the maximum size maxSize of Liyqin, as well
as the similarity threshold oyqsk. First, it adds the target task/policy pair to a
temporary library Liemp and then adds further cases to this library, according to
the similarity function simg,s; and the threshold o4, sorted by the similarity
value. Finally, it returns the maxSize most similar cases from Lic,;, and assigns
them to Lirq:n- Notice that the target task is retained in L4,.4i, and that dissim-
ilar tasks are simply ignored, avoiding negative transfer. However, for that we
assume that the designer-specified similarity function sim;,sr provides a good
estimation of task similarities.

Then we initiate €, a probability which guides the training between explo-
ration (a random policy) and exploitation (the current training policy), according
to

o 1+ maxSize — |Lirain ’ (12)

maxSize

where mazxSize is the maximum size of Lrq;n. In this way, the starting value
of € dynamically takes the amount of knowledge into account that is associated
with the size of the training library.

Algorithm 3 RETRIEVE
1: function RETRIEVE(L, (£2, 7o), maxSize, otask)
2: Liemp < (£2,70)
for V¥ € £ do
if simiask (82, 29) > Otask then
Insert ¥ in Liemp sorted by similarity

if |Liemp| > mazSize then
Remove the last |Liemp| — mazSize cases from Liemp

return Liemp

The next step calls the policy evaluation function POLICY_EVAL. The main
purpose of this function is to define a probability of using the policy from each
case in Liqin. We propose to use the function in Algorithm 4, which takes the
training library Li,qin, the current target task {2, and the policy temperature
factor Tpoiicy as input. The function calculates an average reward Ry for every
case ¥ in Lrqin during a testing phase and uses it to calculate the importance

factor of each case ¥ using a softmazr function [4] defined as

e~ Ro*Tpolicy

Ppoticy (V)

= _ . 13
> vier,. . € TirTeoticy (13)

k3 train
It calculates the importance factors Pporicy(.) for all cases in the library
Lirain- This way, we are tracking the usefulness of each policy in Lipqn for

the current target task.

Algorithm 4 Policy evaluation
1: function POLICY_EVAL(Ltrain, £2, Tpolicy)
2: for V0 € Lirain do
Ry < Evaluate 7, on £2
for V¥ € Lirain do
Calculate Ppoticy () (Eq. (13))

return Ppoicy(.)

The training starts in line 6 and performs K training episodes with a limited
amount of steps H per episode. In each step the algorithm observes the current
state s from the environment and then calls the IT-Inference algorithm (Algo-
rithm 5) using this state s, the training library Li.qin, the policy importance
factors Ppoticy(.), the policy temperature factor 7,oscy, and the e probability as
input to select the action a the agent will take in the current state.

Algorithm 5 Combined REUSE /REVISE

1: function IT-INFERENCE(S, Lirain; Ppoticy(.); Taction, €)
2: With probability ¢ do

3: return random action a,gendom

4: for V9 € Lirqin do

5: Get action probabilities Pactions (S, i) using Taction (Eq. (14))

6: Get weighted action probabilities Pyeighted (S, @i) using Ppoticy (-) (Eq. (15))
7 Get final action probabilities Pfinai(s, ai) (Eq. (16))

8: for Va; € A do

9: With probability Pfina(s,a;) do

10: return q;

Instead of following a single policy like in the e-greedy strategy, II-Inference
blends the policies of the training library according to their importance for the
current task. The function replaces separate REUSE and REVISE stages be-
cause it dynamically adjusts a gradual switch from reusing past knowledge to
refining only the current policy. Here, we are returning a random action with a
probability of € and blending the policies in the training library otherwise. For

that we retrieve the Q-values Qgq, (s,a;) for each action a; in the given state s
for the policies of each case mp, and transform them into action probabilities
Poctions(s, a;) according to another softmaz function defined as

Qg (5:00) 7t

action

—- (14)
ZaeA eQQﬂ (s;0) Taction

Pactionﬁ(& (17;) =

We then calculate the weighted action probabilities Pyeighteds(s,a;) for each
policy

Pweightedﬁ (57 ai) = Pactionﬁ(sv ai) * Ppolicy (7-9) (15)

and sum those probabilities in the next step to get the final action probabilities
Prinai(s, a;) for each action

Pfinal(sa ai) = Z Pweightedﬂ(sa ai)- (16)
VELtrain

We can then select one of the actions a; according to the final probabilities.
This makes sense because by using a stochastic approach for the behaviour
selection of the learning agent, one can get rid of restrictions with regard to
the used algorithm for training the policies of the cases in £ and also different
reward functions that could exist for different tasks.

The policy probability Ppoiicy(.) is re-evaluated in regular intervals, as de-
scribed before, after performing an update of the policy temperature factor 7popicy
with ATpoicy, to get the current importance distribution over the policies in the
training library, progressively switching the attention to the new policy.

A training episodes ends after deciding if the learned target task (2 and its
solution 7 will be added to the general library £ as a new case ¥ in Algorithm
6. Algorithm 6 takes the general library £, the training library Lyqn, the target
task {2, its solution 7g, and the similarity threshold factor ogoution as input
and returns the updated library £. The function checks if one of the solutions
T, in the training library is similar to the new solution 7 with respect to the
threshold factor. Only if there is no similar solution the new case is added to the
general library L.

Algorithm 6 RETAIN

1: function RETAIN(L, Lirain, (2,70), Osolution)
2: for V¥ € Lirain do

3: if Simsolution(ﬂ'97ﬂ-ﬂg) Z O solution then
4: return £

5 return LU (2,)

4 Experimental evaluation

The domain and experiments we describe here aim at showing the viability of
our approach when reusing knowledge in a simple domain.

4.1 Domain and experimental setup

The domain has been adapted from the original Probabilistic Policy Reuse pub-
lication [6], where an agent has to find its way to a goal position in an office
domain consisting of rooms and connecting corridors represented in a grid world,
as illustrated in Figure 2. The agent can move in four directions (left, right, up,
down), but if it would walk against a wall it does not move and remains in the
same position. When the agent reaches the goal state it receives a reward of
R = 1.0, in all other states the reward is R = 0.0. There is only one goal state
per task.

Although simple, this domain has been used in many publications (e.g. [10,
20,28]) to offer a clear way to compare different RL algorithms without the
need of much expert knowledge. Here, a task {2 is defined by its goal position
and for each task only one goal is present and learned individually. The wall
positions and size of our grid world are kept fixed during all experiments and
we used the same settings for all approaches. We train every task for K = 2000
episodes (where an episode ends when the goal state is reached or a maximum
of H = 100 steps is performed) and evaluate the policy quality at each step
by trying to solve the task from 10 different positions, as shown in Figure 2
(right) averaging over 10 episodes. We use the same setting for estimating the
importance factor Ppojicy(.) of each policy in L4, when learning with CBPI
while updating the policy temperature factor 7,01icy every 40 episodes. The task
similarity is determined as the euclidean distance between goal states and the
selection is limited by a percentage of the grid diagonal. Although primitive, this
method already provides good results in this domain.

Fig. 2. The used grid world domain for a simple robot navigation scenario in the
experiment. The graphs show all goal positions that were considered as individual tasks
(green: previously solved tasks, red: task to learn) (left) and the starting positions of
the agent during evaluation (blue) (right).

We perform two experiments. The first one shows the suitability of our ap-
proach for learning a new task with an existing library, and the second one shows
that it can also be used for building a library with core policies for a domain
from scratch. The code and logs of all results reported here are documented and
available online’.

4.2 Learning a new policy with CBPI

In this experiment we evaluate our CBPI algorithm against Policy Library Policy
Reuse (PLPR) [6] and vanilla Q-Learning.

For this purpose, we let an agent train on five source tasks (2; 5 using Q-
Learning until an optimal policy is learned, and save the learned policies 7o, ... o,
for each case in the library £. The agent then has to learn to perform well on a
new target task {2 and learn a policy 7, for that task. The goal positions of the
source tasks (green) and the target task (red) are shown in Figure 2 (left).

As a baseline, we trained the target task (2 from scratch using Q-Learning
with a learning rate o = 0.05 and a discount factor v = 0.95. The strategy used
to balance between exploration and exploitation was the € — greedy strategy
with a starting value of € = 1.0 for maximal exploration and a decay value of
Ae = 0.0005, which was subtracted after each episode until the end of training.

While PLPR always starts the training of a new task with all available policies
in the library, the RETRIEVE stage of CBPI selects only the most promising
policies through a similarity measure simqsx- For this domain, simyqsy is defined
by the euclidean distance between the goal positions of each task which, despite
simple, works very well. Here, we only select the maxzSize = 3 most similar
tasks to guide the training including the task we want to learn. During training
we follow an e-greedy strategy, but since we assume that the chosen policies are
similar to the one we want to build, we initialize € as described in 12 to better
exploit past knowledge, but instead of choosing between random and greedy, we
choose between random and the IT-Inference strategy as described in Section 3.

We evaluate two scenarios with the same training settings. In the first sce-
nario, we are using all available policies for the policy library, £1 2345 = {70,
Ty M2y T2, T2t 10 the second scenario, we deliberately chose to only use
policies from tasks that seem very unrelated to our target task, so the policy
library becomes L4 3.4 = {m2, 73, m4}. The results provided here are averages of
50 runs for each task.

In Figure 3 we can see the development of the policy importance factors
Ppoticy(.) for all policies in Lirqsn Over training episodes for CBPI (left), and
the probabilities for the PLPR approach (right). For CBPI, the policies have a
very similar importance at the beginning, but the current policy becomes rapidly
dominant and has the greatest influence on the training performance. As soon
as a policy reaches the importance threshold of 0.2 it gets deactivated and won’t
be considered anymore until the end of training. The PLPR algorithm does not
evaluate the policies specifically, but calculates a W-value after every episode

! openly available under MIT License: https://github.com/cowhi/CBPI

that indicates the usefulness of a policy for the current task according to the
results achieved. At the beginning of every episode, the W-values are transformed
into a probability to select the according policy and then a policy is chosen as
guiding policy for the next episode based on this probability, Figure 3(right).

3? 1.0 3? 1.0 F T

— — —— omegal

2 0.8 2 08 __ omega2

= = omega3

g 0.6 g 0.6 omegad

4 0.4 & 0.4

o2 o2

©° ©°

200 200

0 100 200 300 400 500 0 100 200 300 400 500
episodes episodes

Fig. 3. Development of policy probabilities Ppoiicy(.) for policies in the training li-
brary Lrrein = {m0,, Ta;, 7o} when using CBPI (left) and when using PLPR with all
policies o, _;(right).

The first part of this experiment uses a library £ that contains 5 cases corre-
sponding to tasks {2, . s including two, {21 5, that are very similar to the target
task §2. In Figure 4 we can see the achieved rewards per episode and both PLPR
and CBPI outperform the standard @-Learning approach by far. It is also no-
table, that our algorithm performs better at the beginning of the training, due
to the fact that it evaluates the available policies before it starts training, while
PLPR starts randomly and learns the weights W for each policy on the fly.

1.0 -
—— Q-Learning

08 —— PLPR (1,2,3,4,5)
g 06 —— CBPI(1,2,34,5)
=
204

0.2

0 250 500 750 1000 1250 1500 1750 2000

episodes
Fig. 4. Resulting rewards when using a policy library that also contains policies from

very similar tasks (£2; and §25).

The second scenario uses a library £ that contains 3 cases corresponding
to tasks {223 4 without the policies that are very similar to the target task 2.

Again, the PLPR approach uses all available tasks for its training library Lyqin,
while the similarity metric in CBPI detects that there are no similar tasks in
the library and builds the training library ignoring the available cases. In Figure
5 we can see the achieved rewards per episode. Here, it is interesting to see that
CBPI and @Q-Learning perform exactly the same, meaning that the unhelpful
policies were successfully detected, while PLPR takes much longer to converge
suffering from negative transfer.

10
08
Eo.e
Q04 —— Q-Learning
—— PLPR(2,34)
02 —— CBPI(2,34)
0 250 500 750 1000 1250 1500 1750 2000

episodes

Fig. 5. Resulting rewards when using a library only containing policies from very un-
related tasks (§22,623, and $24).

The results shown above show that our approach performs slightly better
than PLPR when the available knowledge contains similar task, and is clearly
better if the available knowledge only contains unrelated tasks. CBPI has shown
that it benefits from existing favorable knowledge while in the worst case per-
forms as if no a priori knowledge was available. This behaviour shows that it
can better deal with the problem of negative transfer during training, as long as
a well-defined similarity metric is given.

4.3 Building a core policy library with CBPI

The grid in Figure 6 (left) shows the locations of 50 goal positions that we
used in our experiment to build a core policy. The results are shown for CBPI
(middle) and PLPR (right). It is clearly visible that both algorithms have similar
behaviour and select a good set of policies. It is however notable, that CBPI
provides a set of solutions that contains a policy for every room apart from
the connecting rooms, which makes sense since those can already be reached
by the policy for the next room. The PLPR on the other hand seems to put
an emphasize on those connecting rooms and does not offer solutions for two of
the rooms in the middle of the grid. We therefore conclude that our selection
approach in the RETAIN stage is sensitive enough for selecting core policies in
this domain and provides acceptable results compared to PLPR.

Fig. 6. The same grid world domain was evaluated for the library building experiment.
The graphs show all 50 goal positions that were learned during the experiment (left)
and the extracted core policies using CBPI (middle) and PLPR (right) respectively.

5 Related work

The most closely related work is PLPR as introduced by Fernandéz & Veloso
[6]. The authors propose a framework to autonomously build a library of core
policies for a given domain. The approach differs from ours in the way that we
are blending policies during training according to usefulness for the current task
at every step, but only as long as it seems beneficial, where the other approach
selects a whole policy to be followed for a certain amount of time.

Sharma et al. [19] follow another approach to combine CBR and RL, propos-
ing a CBR framework that is used as an instance-based state function approxi-
mator in a layered RL architecture. Similarly, Gabel & Riedmiller [7] also make
use of CBR for function approximation. We, on the other hand, directly use
previously learned policies for accelerating learning in the new task.

Bianchi et al. [3] also rely on a CBR approach to accelerate learning. However,
their focus is on extracting heuristics from the source tasks, rather than explicitly
reusing policies as we do.

Koga et al. [10] propose to blend multiple policies into a single abstract policy,
which is used at the beginning of learning in any new task (whether the new task
is similar to the source tasks or not). In spite of following a similar idea, CBPI
stores multiple concrete policies, and selects only the most promising ones by
taking similarity with the target task into account.

Sinapov et al. [22] evaluate user-defined task features so as to enable the es-
timation of the similarity between tasks and choose only the most similar one(s)
for the target task. However, they are more focused on source-task selection, and
the transfer is simply accomplished by reusing value functions from one task to
another. CBPI on the other hand is focused on providing a consistent framework
to select and reuse the source policies as good as possible.

6 Conclusions and future work

We here proposed a framework to integrate Case-Base Reasoning with Reinforce-
ment Learning. Building on this framework we introduced Case-Based Policy

Inference which consistently reuses gathered knowledge from previously learned
tasks in order to accelerate learning of a new target task. It exploits previously
learned policies from cases that are similar to the target task and blends the
policies during training, progressively switching the control to the target policy.

We compared CBPI with PLPR and @Q-Learning, and showed that our pro-
posal learns the target task faster and is more robust to negative transfer. We
have also shown that CBPI is effective when building a library of core policies
for a domain.

The results reported here indicate that applying the CBR methodology on RL
is a promising approach. Further works will focus on implementing the framework
with more sophisticated RL algorithms and evaluate it in more complex domains.

Acknowledgments

We are grateful for the support from CAPES, CNPq (grant 311608,/2014-0), and
FAPESP (grants 2015/16310-4, 2016/ 21047-3). We also thank Google (Research
Award) and the Nvidia corporation (GPU donation).

References

1. Aamodt, A., Plaza, E.: Case-based reasoning: Foundational issues, methodological
variations, and system approaches. AI communications 7(1), 39-59 (1994)

2. Aha, D.W.: The omnipresence of case-based reasoning in science and application.
Knowledge-based systems 11(5), 261-273 (1998)

3. Bianchi, R.A., Ros, R., De Mantaras, R.L.: Improving reinforcement learning by
using case based heuristics. In: Proceedings of the 8th International Conference on
Case-Based Reasoning (ICCBR). pp. 75-89. Springer (2009)

4. Bridle, J.S.: Training stochastic model recognition algorithms as networks can lead
to maximum mutual information estimation of parameters. In: Proceedings of the
2nd International Conference on Neural Information Processing Systems. pp. 211—
217. MIT Press (1989)

5. Cheetham, W., Watson, I.: Fielded applications of case-based reasoning. The
Knowledge Engineering Review 20(03), 321-323 (2005)

6. Ferndndez, F., Veloso, M.: Probabilistic policy reuse in a reinforcement learning
agent. In: Proceedings of the 5th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS). pp. 720-727 (2006)

7. Gabel, T., Riedmiller, M.: Cbr for state value function approximation in reinforce-
ment learning. In: Proceedings of the 6th International Conference on Case-Based
Reasoning (ICCBR). pp. 206-221. Springer (2005)

8. Glatt, R., da Silva, F.L., Costa, A.H.R.: Towards knowledge transfer in deep rein-
forcement learning. In: Proceedings of the 5th Brazilian Conference on Intelligent
Systems (BRACIS). pp. 91-96. IEEE (2016)

9. Hullermeier, E.: Credible case-based inference using similarity profiles. IEEE
Transactions on Knowledge and Data Engineering 19(6), 847-858 (2007)

10. Koga, M.L., Freire, V., Costa, A.H.: Stochastic abstract policies: Generalizing
knowledge to improve reinforcement learning. Cybernetics, IEEE Transactions on
45(1), 77-88 (2015)

11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.
30.

Kolodner, J.: Case-based reasoning. Morgan Kaufmann (2014)

Konidaris, G., Scheidwasser, 1., Barto, A.G.: Transfer in reinforcement learning via
shared features. Journal of Machine Learning Research (JMLR) 13(1), 1333-1371
(2012)

Kuhlmann, G., Stone, P.: Graph-based domain mapping for transfer learning in
general games. In: Proceedings of the 18th European Conference in Machine Learn-
ing (ECML). pp. 188-200. Springer (2007)

McCallum, R.A.: Instance-based utile distinctions for reinforcement learning with
hidden state. In: Proceedings of the 12th International Conference on Machine
Learning (ICML). pp. 387-395 (1995)

Mnih, V., Silver, D., Rusu, A.A., Riedmiller, M., et al.: Human-level control
through deep reinforcement learning. Nature 518(7540), 529-533 (2015)

Ng, A.Y., Coates, A., Diel, M., Ganapathi, V., Schulte, J., Tse, B., Berger, E.,
Liang, E.: Autonomous inverted helicopter flight via reinforcement learning. In:
Experimental Robotics IX, pp. 363-372. Springer (2006)

Pan, S.J., Yang, Q.: A survey on transfer learning. Knowledge and Data Engineer-
ing, IEEE Transactions on 22(10), 1345-1359 (2010)

Puterman, M.L.: Markov decision processes: discrete stochastic dynamic program-
ming. John Wiley & Sons, Hoboken, NJ, USA (2014)

Sharma, M., Holmes, M.P., Santamaria, J.C., Irani, A., Isbell Jr, C.L., Ram, A.:
Transfer learning in real-time strategy games using hybrid cbr/rl. In: Proceedings
of the 20th International Joint Conference on Artificial Intelligence (IJCAI). vol. 7,
pp. 1041-1046 (2007)

Sherstov, A.A., Stone, P.: Function approximation via tile coding: Automating
parameter choice. In: Abstraction, Reformulation and Approximation, pp. 194—
205. Springer (2005)

Silva, F.L.d., Glatt, R., Costa, A.H.R.: Simultaneously learning and advising in
multiagent reinforcement learning. In: Proceedings of the 16th International Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS) (2017)
Sinapov, J., Narvekar, S., Leonetti, M., Stone, P.: Learning inter-task transferabil-
ity in the absence of target task samples. In: Proc. 14th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS). pp. 725-733 (2015)
Stone, P., Sutton, R.S.: Scaling reinforcement learning toward robocup soccer. In:
Proceedings of the 18th International Conference of Machine Learning (ICML).
pp. 537-544. ACM (2001)

Sutton, R.S., Barto, A.G.: Introduction to Reinforcement Learning. MIT Press,
Cambridge, MA, USA (1998)

Taylor, M.E., Stone, P.: Transfer learning for reinforcement learning domains: A
survey. Journal of Machine Learning Research (JMLR) 10, 1633-1685 (2009)
Tesauro, G.: Temporal difference learning and td-gammon. Communications of the
ACM 38(3), 58-68 (1995)

Thrun, S., Mitchell, T.M.: Lifelong robot learning, vol. 15. Elsevier (1995)
Thrun, S., Schwartz, A.: Finding structure in reinforcement learning. Proceedings
of the 7th International Conference on Neural Information Processing Systems
(NIPS-94) pp. 385-392 (1995)

Watkins, C.J., Dayan, P.: Q-learning. Machine Learning 8(3-4), 279-292 (1992)
Watson, I.: Case-based reasoning is a methodology not a technology. Knowledge-
based systems 12(5), 303-308 (1999)

