Automatic Object-Oriented Curriculum
Generation for Reinforcement Learning

Felipe Leno da Silva and Anna Helena Reali Costa

Escola Politécnica of the University of Sdo Paulo, Brazil
{f.leno, anna.reali}@usp.br

Abstract. Even though Reinforcement Learning (RL) is one of the most
used techniques to train autonomous agents, learning complex tasks takes
a very long time. One way to learn faster is dividing a complex task
into several simple subtasks, building a Curriculum that guides Transfer
Learning (TL) methods to reuse knowledge in a convenient sequence.
However, the state-of-the-art in Curriculum Learning for RL does not
take into account the used TL technique to build specialized Curricula,
leaving the burden of a careful subtask selection to a human. We here
rely on the Object-Oriented task description to guide both the Curricu-
lum generation and knowledge reuse procedures, autonomously build-
ing object-based Curricula. Our initial experiments show that our pro-
posal achieves a better performance while requiring less computation
time when compared to the state-of-the-art technique.

Keywords: Reinforcement Learning, Transfer Learning, Curriculum Learning

1 Introduction

Although Reinforcement Learning (RL)[14] has been used to train agents to
solve tasks autonomously, learning how to deliver a good performance takes
very long time, especially in the challenging tasks for which autonomous agents
are starting to be employed [8]. Since the classical RL algorithms are not scalable
enough to be directly applied to such difficult tasks, a growing body of literature
studies how to reuse past knowledge, like humans do, to accelerate the learning
process [16].

More recently, inspired by the Curriculum Learning approach initially ap-
plied for Supervised Learning methods [1], Narvekar et al. [9] proposed to build
Curricula for RL agents. The main idea of Curriculum Learning is to decompose
a hard learning task (target task) into several simple ones (source tasks). Then,
the learning agent can master source tasks and reuse the gathered knowledge to
solve a target task (hopefully) faster than directly learning in the hard task.

Narvekar has shown that a Curriculum can indeed be used to accelerate
learning in the complex Half Field Offense [5] and Pacman domains. However,
their proposal requires a human-provided set of source tasks and a manually
specified sequence of tasks to be executed by the agent. Later works showed

that building a good Curriculum is not easy, especially if Curricula are built
by non-experts human operators [10]. Moreover, relying on such domain-specific
and human-crafted knowledge is not always desirable for an autonomous agent.

Svetlik et al. [15] then proposed a method to autonomously estimate the
Curriculum, requiring less domain-knowledge than in the original proposal. The
Curriculum now is built as a graph, and some tasks can be solved in parallel by
the agent or a set of agents. However, none of those works focused on how to
reuse knowledge from the already solved source tasks, or on how to autonomously
generate the set of source tasks.

In this work we intend to autonomously generate a Curriculum taking into
account the TL method to better reuse the gathered knowledge. We use the
Object-Oriented representation [3] to both generate the Curriculum and reuse
knowledge, profiting from the generalization provided by it. We also make use
of the representation to autonomously generate a set of source tasks. Our initial
experiments indicate that our proposal requires only an intuitively-given task
description to generate useful Curricula, and that our proposal is faster and
simpler than the one proposed by Svetlik et al. Our source task generation pro-
cedure was also successful to autonomously build a set of source tasks that lead
to an useful Curriculum. The remainder of this paper is organized as follows:
In Section 2 we present the background knowledge required for understanding
our work; in Section 3 we present our proposal adapting the Curriculum gen-
eration procedure to make better use of the Object-Oriented description; we
then present our source task generation procedure in Section 4; in Section 5 we
present our experimental setup and evaluation; and finally Section 6 concludes
the paper and points towards future works.

2 Background

We here firstly present the related concepts in the RL area and then discuss the
main Curriculum Learning works for RL.

2.1 Reinforcement Learning

A Markov Decision Process (MDP) is the most adopted model for RL problems.
An MDP is composed of (S, A, T, R), where S is a (possibly infinite) set of envi-
ronment states, A is a set of available actions, T" is the transition function, and
R is the reward function. At each perception-action cycle, the agent observes the
current state s, chooses one action a, and receives one reward r = R(s,a,T(s)).
Each executed step results in a tuple of (s,a,s’,r), that is the only feedback
the agent has to learn how to solve the task (i.e., maximize rewards). Since in
learning problems R and 71" are unknown, the agent has to explore the environ-
ment by (initially) choosing random actions, until gathering enough knowledge
to induce a policy m : S — A, that returns one action to be applied in each
state. A possible way to learn in this setting is applying the Q-Learning [18]
algorithm, which iteratively updates an estimate of action qualities for each

state @ : S x A — R. This estimate eventually converges to the optimal Q-
function: Q*(s,a) = E [Y>;2,~'ri], which can be used to define an optimal
policy 7*(s) = arg max, Q*(s,a) (the task solution). However, learning @ takes
very long even for simple tasks, and much effort has been devoted to accelerate
the learning process.

The use of relational task descriptions can help to accelerate the learning
process, as the state-action space is abstracted. The Object-Oriented represen-
tation [3, 12] can be used to describe the task in an intuitive manner and enable
generalization opportunities. In Object-Oriented MDPs (OO-MDP) the state
space is abstracted through the description of a set of classes C = {C1,...,C.},
where each class C; is composed of a set of attributes denoted as Att(C;) =
{Ci.b1,...,C;.by}. Each attribute b; has a domain Dom(C;.b;), specifying the
set of values this attribute can assume. O = {o1,...,0,} is the set of objects
that exist in a particular environment, where each object o; is an instance of one
class C; = C(o0;), so that o; is described by the set of attributes from its class
0; : Att(C(0;)). Now, the environment state is observed as the union of all object
states: s = J o 0-state, where an object state is the set of values assumed by

each of its attributes at a given time o;.state = (HbeAtt(C(oi)) oi.b>. Note that

the definition of object here is not exactly the same as in OO programming. For
RL, there is no class hierarchy. Also, the equality of objects in the point of view
of the agent is usually computed comparing if two objects belong to the same
class and have the same attribute values.

The generalization provided by such relational task descriptions is especially
helpful to Transfer Learning (TL) approaches [6], where the objective is to reuse
previous knowledge to solve a task faster [16]. In the next Section we describe
Curriculum Learning, an emerging method to accelerate learning by the use of
TL techniques.

2.2 Curriculum Learning for RL

The main idea of Curriculum Learning is to, given a hard task to be solved
(target task) Ty, decompose T; into several easier tasks 7¢ that can be solved
much faster and through TL learn all tasks in T¢ plus 7; faster than learning 7;
from scratch.

In Narvekar et al.’s description [9], the Curriculum is a sequence of tasks
within a single domain D. D has a set of degrees of freedom F, which are the
task parameters. Any possible MDP that belongs to D can be generated by a
generator given a set of values of 7, 7 : D x F — T. The learning agent is
assumed to have a simulator to freely learn in the simpler tasks, and a sequence
of source tasks is given by a human . The agent then learns for some time in each
of the source tasks specified by the Curriculum, before trying to solve the target
task 7;. The steps to build and use a Curriculum are summarized in Algorithm 1.
Given the target task 7y, a set of candidates source tasks T is defined (manually

! Narvekar presents several heuristic procedures to define a Curriculum, but domain-
specific human knowledge is required for all of them.

defined in all works so far). Then, the Curriculum C is built or given by a human,
specifying a sequence of tasks (71,72, ..., T¢), T; € Te, T C Tc. All tasks are then
solved in order and previous knowledge might be reused for each task.

Algorithm 1 Curriculum generation and use

Require: target task 7;.

1: T < createTasks(Ty)

2: C + buildCurriculum(T, Tz)
3: Learn 7; using Curriculum C.

Svetlik et al. [15] proposes to build the Curriculum as a graph, rather than
a sequence of tasks. They also propose a method for automatic Curriculum
generation and use Reward Shaping to transfer knowledge from one task to
another. The main idea of their proposal is to build a graph of tasks according
to a transfer potential metric, that estimates how much a source task would
benefit the learning process of another. They calculate transfer potential as:

WTTy) = 0]

=~ 7 1
T+ 157~ 157] M)

Where v(7;,T;) defines the transfer potential value of two tasks 7; and 75, |Q7; N
Q7;| is the number of Q-values that those two tasks have in common, and [S7; |
is the size of the state space of T;. A Curriculum graph is then generated by
including all source tasks that have a transfer potential to 7; higher than a
threshold parameter e.

While both works have shown that building Curricula may be beneficial to
learning agents, none of them evaluate the advantage of generalization when
transferring knowledge between Curriculum tasks. Moreover, the set of source
tasks is manually given in all works, and an automated source task generation
procedure was listed as one of the open problems for Curriculum approaches
[15]. In the next Sections we describe our proposal to autonomously generate
a Curriculum, how to reuse knowledge taking advantage of a relational task
description, and our source task generation procedure.

3 Object-Oriented Curriculum Generation

As discussed in Section 2, OO-MDPs can be used to provide generalization op-
portunities. We here contribute a method to take advantage of the generalization
provided by OO-MDPs to facilitate the contruction and use of a Curriculum. We
use the Object-Oriented description to autonomously generate Curricula, and
show that our proposal uses the extra domain knowledge received in the task
description to build a better Curriculum using less computational power when
compared to Svetlik et al.’s proposal [15].

Since all tasks within a Curriculum are in the same domain, we have a single
set of classes for all tasks, but each task may have a different set of objects and
initial state. Thus, for our purposes we define an Object-Oriented task 7; as:

T, =(C, 07,87, FTi, AT TT: | RT:) (2)

where C is the set of classes, O7; is the set of objects in 7;, Sg—’i is the probability
distribution of initial states for 7;, F7 is the set of degrees of freedom not related
to objects (e.g., size of the grid in a Gridworld domain), A7 is the set of possible
actions for 7;, T is the transition function, and R7: is the reward function. As
in [15], we consider a Curriculum as a graph of tasks, and the Curriculum is
generated by following Algorithm 2. The Curriculum is composed of the set of
vertexes V and the set of edges £. The first step is to split the set of source tasks
T in groups according to their parameters (line 2). The grouping procedure is
fully described in Algorithm 3 and the main idea is to build a set of candidate
tasks T¢ according to their transfer potential, that we calculate based on the
Object-Oriented description as:

Algorithm 2 Automatic Curriculum Generation
Require: set of source tasks 7T, target task 7T, threshold for task inclusion e.

LV 0,E+D > Initializing the Curriculum Graph
2: (G,Tc) = groupTasks(T, T, €) > Algorithm 3
3: V<« T

4: for Vg € G do > Intra-group Transfer
5: for V7T; € g do

6: T = argmaxr, eg|>i V(T;, Ti, children(T;)) > Eq. (3)
7 if v(Tm, Ti, children(T;)) > € then

8 E— EU(Tm, Ti)

9: for Vg € G do > Inter-group Transfer
10: for V¢’ : ¢ € G and g.features C g'.features do
11: for VT; € g do
12: T = argmaxr, eg V(7T;, Ti, children(Ts;)) > Eq. (3)
13: if v(Tm, Ti, children(T;)) > € then
14: E—EU(Tm,Ti)
15: for V7; : T; € Tc and deg™ (7:) =0 do > Add edges to target task
16: E+— EU(T:, Te)
17: C«+ {V, &}
18: return C

sime(Ts, Tz)

: o ®3)
maxr,; e stme(Ts, ﬂ)%

v(Ts, e, Te) =

where 7T, is the task to measure the transfer potential, 7; is the target task,
Tc is the set of task already defined to be executed before Ty, simc(7;,7T;) is a
similarity value between tasks 7; and 7;, and O7i is the set of objects of task T;.

Algorithm 3 groupTasks
Require: set of source tasks 7T, target task 7T, threshold for task inclusion e.
Te+ 0
G+ 0
for VT, € T do
if v(7i, Tz, Tc) > € then > Eq. (3)
if 3g: g € G and g.features = T;. features then
G + G U group(T;.features) > Creates a new group
g = {g € G|g.features = T;. features}
g gUTi
Te < TcUTi
10: Sort tasks within groups by v
11: return (G, 7Te),

©

The intuition behind this equation is to prioritize the inclusion of tasks that are:
(i) similar to the target task, increasing the usefulness of the learned policy; (ii)
dissimilar from the previously included tasks, to reduce the amount of redundant
knowledge; and that (iii) have a smaller state space than in the target task, to
train first in smaller tasks. Here, the similarity between tasks is calculated as:

. 0% nol| SN S
sime(Ti, T;) = C’T CLT, -|-| 5 d (4)
e max(\(’)d_ ,|(’)d_) | S

where 7; and 7; are tasks from the same domain, C; is one class from the set

C, and (977 N OTJ is the set of objects that belong to class C; and have the
same attrlbute values in both 7; and 7;. Based on these metrics, the return of
Algorithm 3 is a group for each possible task parameters with transfer potential
higher than the threshold e. (Alg 3 line 4).

After the set of task groups is built, we define the edges of the Curriculum
as proposed by Svetlik et al. [15]. Firstly we search for tasks that have a high
transfer potential between themselves within the same task group (Alg. 2 lines
4-8), then we search for tasks that belong to different groups, as long as the
features of the source task are contained in the features of 7; (lines 9-14). Finally,
we create an edge from the tasks with outdegree zero to the target task (line
16).

In order to use this Curriculum for learning, an unsolved task with indegree
zero must be selected and used for training until a stopping criterion. Then, all
the edges from the selected task are removed from the graph and this process is
repeated until the target task is selected (that will be the last one).

After a task is selected for training, a procedure for reusing knowledge from
the previously solved tasks must be executed. The TL literature has studied
many ways of reusing knowledge from one task to another, such as transferring
low-level interactions with the environment [7], policies [4], value or @ func-
tions [17], abstract or partial policies [6], action suggestions [13], and heuristics
or biases for a more effective exploration [2], each of them presenting benefits

over learning from scratch. We use a method based on value function reuse as
performed by Narvekar et al. [9], but taking advantage of the Object-Oriented
representation. We first build Probabilistic Inter-TAsk Mappings (PITAM) as
proposed in [11] to define a mapping between the Object-Oriented states in
the source and target tasks. A PITAM is a mapping between states where:
P17 S1 x St, — [0, 1]. This mapping is calculated according to a similarity
metric, which we define as: simprran(st, ss) = |Os, N Os,|. That is, states that
have no object in common have a mapping with zero probability, and as higher
the number of common objects, as higher will be the mapping probability. This
similarity value is calculated for all the state space in the source task and the
PITAM probability is normalized as }° . g Pr. 7 (st,s) = 1. Although calcu-
lating exact PITAM probabilities is computationaly expensive, it is easy to use
domain knowledge to prune the state space search (e.g., calculating similarity
values only for states in which there are objects with similar attribute values).
After the PITAM calculation, we initialize the Q-table in the new task as:

doTieCy, 2asiesy, DT (51, 81)QT; (80, ar)
) (5)
ICr|

QT (8t,a1) +

where C7; is the set of already solved tasks that had an edge to 7; in the
original Curriculum graph. Notice that the object attributes must be agent-
centred to facilitate transfer. For example, if the agent is in a world represented
by a grid, it is very hard to generalize states if the object observations are given
by their absolute positions. However, if the distances between the agent and
objects are used (agent-centred representation), it is much easier to find state
correspondences.

Using the Curriculum and this transfer procedure, the agent is then expected
to learn faster than when learning from scratch. In the next Section we describe
our proposal to autonomously generate source tasks.

4 Object-Oriented Autonomous Source Task Generation

As Curriculum Learning aims at solving portions of the target task first to
accelerate learning, the success of a Curriculum depends on: (i) a proper set of
source tasks; (ii) a proper ordering of those tasks; (iii) the efficacy of the chosen
TL algorithm; (iv) a good stopping criterion to identify when to switch tasks.
Even though Svetlik et al. [15] had proposed a method to autonomously define
the sequence of tasks, autonomously defining the set of source tasks was still an
open problem [15,9, 10].

We here propose a method to autonomously generate source tasks by using
the object-oriented representation, requiring much less human effort than as in
previous works in which the set of source tasks must be manually given.

Algorithm 4 fully describes our source task generation procedure (which fits
as a createTask function in Alg. 1 line 1). At first we define the set Fyimpie,
which is a set of possible values of the degrees of freedom in the target task.
As the object-oriented representation has no information about F, we rely on

a human’s knowledge to specify the simplify function. Then, we define the set
of objects belonging to the class with fewer objects Cy,ipn (lines 2-3). We then
create o0,,;, tasks, each of them containing from 0 to 0,,;, objects from Ci,ip
(line 5), one possible set of values from Fyipmpie (line 6), and a random number
of objects from the other classes (line 9). The initial state for this new source
task if defined through the initState function. A possible way to implement
this function is to draw random attribute values for all objects, or copy the
values from the initial state in the target task. The action space, transition
function, and reward functions for the new task are then defined through the
actionSpace, transition Function, and rewardFunction functions, and the task
is finally added to the set of source tasks 7. This process is repeated multiple
times according to a parameters ny,.p.

Algorithm 4 createTasks(Ti, F¢, nep)

1: Fsimple — S’melzfy(fﬂ)

2: Chpin ¢ argming, ec \OZ:H

3: Omin < |Ogtmm|

4: for nyep times do

5: for Vi € {0,...,0min} do

6: Draw F' from Fsimpie

T O + Draw ¢ objects from Og‘mm
8: for VC; € C do h
9: O « OU Draw q objects from Og’;, q€ {0,...,\Og’fi|}
10: So + initState(O, T, F)
11: A « actionSpace(O, T;, F, AT*)
12: T « transitionFunction(T")
13: R « rewardFunction(R"*)
14: T+ TU(C,0,8,F AT,R)
15: return T

This procedure can be used to generate a set of source tasks when a human
is unavailable to provide it. However, this procedure is not valid for all possible
domains, because we change the number of objects without knowledge about the
transition function. When using this procedure, the designer must ensure that
solvable tasks are generated (it might be necessary to set a minimum number
of objects of a given class or to create the initial state in a domain-dependent
way).

In the next Section we present our experimental evaluation.

5 Experimental Evaluation

We describe here our experiments intended to show that our proposal builds an
useful Object-Oriented Curriculum. Firstly we present our experimental setup,
then the results along with discussion.

5.1 Experimental Setup

As experimental domain, we have chosen the Gridworld domain, as proposed by
Sevtlik et al. [15]. Figure 1 illustrates our Gridworld. Each cell in the grid may
have one of the following objects or be empty: fire, pit, or treasure. The agent can
move in four cardinal directions A = {North, South, East,
West}, and the task is solved when the agent collects the treasure. The Object-
Oriented description of the task has the classes C = {Pit, Fire, Treasure},
each of them with z and y attributes. The position attributes are observed in
regard to the distance between the agent and the object, rather than the ab-
solute position. The degrees of freedom for this domain are the size of the grid
F = {sizeX, sizeY'}. At each of the executed steps, the agent observes one of
the following rewards: (1)4-200 for collecting the treasure; (ii) -250 for getting
next to a fire; (iii) -500 for getting into a fire; (iv) -2500 for falling into a pit;
and (v) -1 if nothing else happened.

The final target task is illustrated in Figure 1, and contains 8 pits, 11 fires, and
1 treasure. As in [15], we generate a set of source tasks by reducing the number
of objects and/or reducing the size of the grid. In total, we had |T| = 27 source
tasks. During training, all source tasks given by the agent Curriculum were
executed until the agent presents the same cumulative reward for 2 consecutive
episodes, or 10 learning episodes were carried out.

NN
L T

Fig. 1. An illustration of the target task in the Gridworld domain.

We compare our proposal with Svetlik’s [15] Curriculum generation proce-
dure and the regular Q-Learning. Svetlik’s proposal is implemented with Reward
Shaping as in the original paper. The comparison metric is the cumulative reward
when trying to solve the target task. The threshold parameter for Curriculum
generation was set € = 4 for our proposal and € = 15 for Svetlik’s. We also
evaluate our proposal with autonomously generated source tasks, using € = 1
and n,e, = 10. Note that the transfer potential in Svetlik’s proposal is calcu-
lated based on numbers of Q-table entries, that are orders of magnitude bigger
than numbers of objects (used in our proposal). Hence, the e threshold should
be scaled accordingly.

The time taken by each algorithm to generate a Curriculum was stored.
Given the same target task, we variate the number of source tasks (randomly
generated) and evaluate the computation time to each algorithm.

5.2 Results

Hereafter we refer to results achieved by each algorithm as: Regular Q-Learning:
No Curriculum; Swvetlik’s Proposal: Svetlik; Our proposal with a manually
given set of source tasks: OO - Given; Our proposal with an autonomously
generated set of source tasks (Section 4): OO - Generate.

Figure 2 shows the experimental results in the Gridworld domain. Although
very good results were shown in [15] using Svetlik’s proposal, we found out that
their proposal is quite sensitive to parameters and to the provided source tasks.
Even though we had a similar number of source tasks and parameters as in
[15] (27 source tasks and 6-task Curriculum against 30 source tasks and 5-task
Curriculum), we could not achieve a better performance than No Curriculum
using their proposal. In its turn, OO-Given presents a better performance than
No Curriculum under the same situation, showing the advantages of our pro-
posal to accelerate learning without the need of extreme care when engineering
the source task set and setting parameters. OO-Generated presented a slightly
worst performance than No Curriculum between 1850 and 2500 learning steps.
However, OO-Generated then achieves the optimal policy very fast, even before
than OO-Given. Table 1 shows the number of learning steps taken by each algo-
rithm to achieve the optimal policy. Notice that our approach achieves it faster
than both No Curriculum and Svetlik. Those results show that our proposal is
promising for building useful Curricula, even if a manually given set of source
tasks is not available.

20

= No Curriculum
15 —— 00-Given
Svetlik
—— 0O - Generated

10

-5

-10 v
/
_15 y
0 1000 2000 3000 4000 5000
Training Episodes

Cumulative Reward

Fig. 2. The average discounted cumulative rewards observed in 10,000 repetitions of
the experiment. Steps used to learn source tasks are also considered in the graph.

Figures 3, 4, and 5 show the resulting Curriculum when using OO-Generated,
00-Given, and Svetlik respectively. Notice that the same source tasks were given
to OO0-Given and Svetlik, while OO-Generated generates its own source tasks.

6000

Table 1. Average number of learning steps taken to achieve the optimal policy (average
of 10000 executions).

Alg. Steps
No Curriculum | 3250
0O0- Given 2900
0OO- Generated| 2550
Svetlik 6100

-
.

= Y

4R

.
-8

A =
or)

Fig. 3. The resulting Curriculum graph when using OO-Generated.

OO0-Generated creates tasks that seem unintuitive at first sight, but are still
useful for learning. While in the two lower tasks the agent learns to avoid pits
and fires, the upper task helps the agent to learn how to reach the treasure.

Since OO-Given uses manually-given tasks, the outcome is more intuitive.
The source tasks are mostly smaller versions of the target task, in which a small
number of objects exist to help the agent learn how to interact with them.

Svetlik however prefers tasks without objects. Most of the chosen source tasks
have no objects, which doubtlessly results in tasks that can be learned faster.
But as the target task consists in avoiding fires and pits, those source tasks
are not very helpful and result in the worst performance among the evaluated
algorithms.

Table 2 shows the required time to generate a Curriculum for each algorithm.
Our proposal is much faster than Svetlik’s for all the evaluated sizes of source
task sets. The difference in computation time is mostly due to the calculation of
the transfer potential between tasks (Equations (1) and (3)). While computing
|Q7; UQT; | is very computationally intensive, we estimate the transfer potential
through the Object-Oriented description in a simpler manner. Notice also that

Fig. 4. The resulting Curriculum graph when using OO-Given.

the time taken to generate the set of source tasks is negligible when summed
with the Curriculum generation time.

Table 2. Computation time to generate a Curriculum.

|T| = 10{|T| = 50||T| = 100||T| = 200{| 7| = 500
00- Given 1ms 13ms 50ms 205ms 1.2s
0OO0O- Generated| 1.6ms 14ms 50ms 205ms 1.2s
Svetlik 54ms | 440ms 1.4s 4.4s 26.7s

Our experimental evaluation has shown that using the Object-Oriented de-
scription to generate Curricula presents benefits in both performance and com-
putation time. Moreover, it is possible to autonomously generate the set of source
task and still build an useful Curriculum, without degradation of the computa-
tion time.

6 Conclusion and Further Work

Accelerating the learning process of Reinforcement Learning (RL) tasks is one
of the main current concerns of the Machine Learning community. The use of
Curriculum Learning in RL is an emerging and promising technique, but the pro-
posals so far require carefully extracted domain knowledge to work, in the form
of parameter selections and construction of a source task base. We here propose
an Object-Oriented Curriculum generation procedure that builds a Curriculum
graph by using an intuitively-given Object-Oriented task description. We also

“

A 4

= 1 ‘ T T T T 1T *
=

Fig. 5. The resulting Curriculum graph when using Svetlik.

propose a procedure to autonomously generate the set of source tasks to a Cur-
riculum, requiring less domain-specific knowledge than in the previous works. We
have shown in our experiments that our proposal outperforms previous works
in both performance and Curriculum Generation speed. Future works can also
evaluate if Object-Oriented Curricula can help humans to better understand the
agent learning process and build better Curricula.

Acknowledgements

We gratefully acknowledge financial support from CNPq (grant 311608/2014-
0) and Sdo Paulo Research Foundation (FAPESP), grants 2015/16310-4 and
2016/21047-3.

References

1.

10.

11.

12.

13.

14.

15.

16.

Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Curriculum Learning. In
Proceedings of the 26th International Conference on Machine Learning (ICML),
pages 41-48, 2009.

R. A. Bianchi, L. A. C. Jr., P. E. Santos, J. P. Matsuura, and R. L. de Mantaras.
Transferring Knowledge as Heuristics in Reinforcement Learning: A Case-Based
Approach. Artificial Intelligence, 226:102 — 121, 2015.

C. Diuk, A. Cohen, and M. L. Littman. An Object-oriented Representation for Effi-
cient Reinforcement Learning. In Proceedings of the 26th International Conference
on Machine Learning (ICML), pages 240-247, 2008.

F. Fernandez and M. Veloso. Probabilistic Policy Reuse in a Reinforcement Learn-
ing Agent. In Proceedings of the 5th International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS), pages 720727, 2006.

M. Hausknecht, P. Mupparaju, S. Subramanian, S. Kalyanakrishnan, and P. Stone.
Half Field Offense: An Environment for Multiagent Learning and Ad Hoc Team-
work. In AAMAS Adaptive Learning Agents (ALA) Workshop, May 2016.

M. L. Koga, V. F. da Silva, and A. H. R. Costa. Stochastic Abstract Policies:
Generalizing Knowledge to Improve Reinforcement Learning. IEEE Transactions
on Cybernetics, 45(1):77-88, 2015.

A. Lazaric, M. Restelli, and A. Bonarini. Transfer of Samples in Batch Reinforce-
ment Learning. In Proceedings of the 25th International Conference on Machine
Learning (ICML), pages 544-551, 2008.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level Control
through Deep Reinforcement Learning. Nature, 518(7540):529-533, 2015.

S. Narvekar, J. Sinapov, M. Leonetti, and P. Stone. Source Task Creation for
Curriculum Learning. In Proceedings of the 15th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS), pages 566-574, 2016.

B. Peng, J. MacGlashan, R. Loftin, M. L. Littman, D. L. Roberts, and M. E. Taylor.
An Empirical Study of Non-expert Curriculum Design for Machine Learners. In
Proceedings of the IJCAI Interactive Machine Learning Workshop, 2016.

F. L. d. Silva and A. H. R. Costa. Towards Zero-Shot Autonomous Inter-Task
Mapping through Object-Oriented Task Description. In Proceedings of the 1st
Workshop on Transfer in Reinforcement Learning (TiRL), 2017.

F. L. d. Silva, R. Glatt, and A. H. R. Costa. Object-Oriented Reinforcement
Learning in Cooperative Multiagent Domains. In Proceedings of the 5th Brazilian
Conference on Intelligent Systems (BRACIS), pages 19-24, 2016.

F. L. d. Silva, R. Glatt, and A. H. R. Costa. Simultaneously Learning and Ad-
vising in Multiagent Reinforcement Learning. In Proceedings of the 16th Inter-
national Conference on Autonomous Agents and Multiagent Systems (AAMAS),
pages 1100-1108, 2017.

R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT
Press, Cambridge, MA, USA, 1st edition, 1998.

M. Svetlik, M. Leonetti, J. Sinapov, R. Shah, N. Walker, and P. Stone. Automatic
Curriculum Graph Generation for Reinforcement Learning Agents. In Proceedings
of the 31st AAAI Conference on Artificial Intelligence (AAAI), pages 2590-2596,
San Francisco, CA, February 2017.

M. E. Taylor and P. Stone. Transfer Learning for Reinforcement Learning Domains:
A Survey. Journal of Machine Learning Research, 10:1633-1685, 2009.

17. M. E. Taylor, P. Stone, and Y. Liu. Transfer Learning via Inter-Task Mappings for
Temporal Difference Learning. Journal of Machine Learning Research, 8(1):2125—
2167, 2007.

18. C. J. Watkins and P. Dayan. Q-learning. Machine learning, 8(3):279-292, 1992.

